Abyssal Currents Driven by a Local Wind Forcing through Deep Mixed Layer: Implication to the East Sea

  • Seung, Young-Ho (Department of Oceanography, College of Natural Science, lnha University)
  • Published : 2005.06.30

Abstract

A simple analytical model is considered in an attempt to demonstrate a formation mechanism of the abyssal current in the East Sea. In this model, the abyssal currents are driven by wind through an outcrop region and flow along closed geostrophic contours. A rough estimate of the abyssal currents, arrived at by applying this model to the region of deep mixing in the East Sea, gives currents comparable to those observed, although there is an uncertainty in the surface area of the outcrop region. It seems that the spin-up of deep water by wind forcing through the region of deep winter mixing is, at least partly, an important contribution to the formation of the abyssal currents in the East Sea.

Keywords

References

  1. Chang, K.I., N.G. Hogg, M.S. Suk, S.K. Byun, and K. Kim. 2002. Mean flow and variability in the southwestern East Sea. Deep-Sea Res.I, 49, 2261-2279 https://doi.org/10.1016/S0967-0637(02)00120-6
  2. Gamo, T., Y. Nozaki, H. Sakai, T. Nakai, and H. Tsubota. 1986. Spacial and temporal variations of water characteristics in the Japan Sea bottom layer. J. Mar. Res., 44, 781-793 https://doi.org/10.1357/002224086788401620
  3. Hendershott, M. 1989. The ventilated thermocline in quasigeostrophic approximation. J. Mar. Res., 47, 33-53 https://doi.org/10.1357/002224089785076398
  4. Hogan, P. and H. Hulbert. 2000. Impact of upper ocean- topographical coupling and isopycnal outcropping in Japan/East Sea models with 1/$8_{\circ}$ to 1$/64_{\circ}$ resolution. J. Phys. Oceanogr., 30, 2535-2561 https://doi.org/10.1175/1520-0485(2000)030<2535:IOUOTC>2.0.CO;2
  5. Holloway, G., T. Sou, and M. Eby. 1995. Dynamics of circulation of the Japan Sea. J. Mar. Res., 53, 539-569 https://doi.org/10.1357/0022240953213106
  6. Isobe, A. and Y. Isoda. 1997. Circulation in the Japan Basin, the northern part of the Japan Sea. J. Oceanogr., 53, 37-381
  7. Kang, D.-J., S. Park, Y.-G. Kim, K. Kim, and K.-R. Kim. 2003. A moving-boundary box model (MBBM) for oceans in change: An application to the East/Japan. Geophys. Res. Lett., 30(6), 1299, doi:10.1029/2002GL016486
  8. Kawabe, M. 1982. Branching of the Tsushima Current in the Japan Sea. II. Numercial experiment. J. Oceanogr., 38, 183-192
  9. Kawamura, H. and P. Wu. 1998. Formation mechanism of Japan Sea proper water in the flux center off Vladivostok, J. Geophys. Res., 103, 21611-21622 https://doi.org/10.1029/98JC01948
  10. Kawase, M. and D. Straub. 1991. Spin-up of source-driven circulation in an abyssal basin in presence of bottom topography. J. Phys. Oceanogr., 21, 1501-1514 https://doi.org/10.1175/1520-0485(1991)021<1501:SOSDCI>2.0.CO;2
  11. Kim, K. and J.-Y. Chung. 1984. On the salinity minimum layer and dissolved oxygen maximum layer in the East Sea(Japan Sea). p. 55-65. In: Ocean Hydrodynamics of the Japan and East China Seas, ed. by T. Ichiye. Elsevier, Amsterdam
  12. Kim, K., K.-R. Kim, D.-H. Min, Y. Volkov, J.-H. Yoon, and M. Takematsu. 2001. Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans? Geophys. Res. Lett., 28(17), 3293-3296 https://doi.org/10.1029/2001GL013078
  13. Kim, K. J. and Y. H. Seung. 1999. Formation and movement of the ESIW as modeled by MICOM. J. Oceanogr., 55, 369-382 https://doi.org/10.1023/A:1007841313128
  14. Luyten, J. R., J. Pedlosky, and H. Stommel. 1983. The ventilated thermocline. J. Phys. Oceanogr., 13, 292-309 https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2
  15. Na, J.-Y., J.-W. Seo, and S.-K. Han. 1992. Monthly-mean sea surface winds over the adjacent seas of the Korea peninsular. J. Kor. Soc. Oceanogr., 27, 1-10
  16. Rhines, P. B. and W. R. Young. 1982. A theory of the wind-driven circulation. I. Mid-Ocean gyres. J. Mar. Res., 40, 559-596
  17. Senjyu, T. and H. Sudo. 1994. The upper portion of the Japan Sea Proper Water: Its source and circulation as deduced from isopycnal analysis. J. Oceanogr., 50, 663-690 https://doi.org/10.1007/BF02270499
  18. Senjyu, T., T. Aramaki, S. Otosaka, O. Togawa, M. Danchenkov, E. Karasev, and Y. Volkov. 2002. Renewal of the bottom water after the winter 2000-2001 may spin-up the thermohaline circulation in the Japan Sea. Geophys. Res. Lett., 29(7), 1149, doi: 10.1029/2001GL014093
  19. Seung, Y. H. 1992. A simple model for separation of East Korean Warm Current and formation of North Korean Cold Current. J. Kor. Soc. Oceanogr., 27, 189-196
  20. Seung, Y. H. 1997. Application of ventilation theory to the East Sea. J. Kor. Soc. Oceanogr., 32, 8-16
  21. Seung, Y. H. and J. H. Yoon. 1995. Some features of winter convection in the Japan Sea. J. Oceanogr., 51, 61-73 https://doi.org/10.1007/BF02235936
  22. Takematsu, M., Z. Nagano, A. G. Ostrovskii, K. Kim, and Y. Volkov. 1999. Direct measurements of deep currents in the northern Japan Sea. J. Oceanogr., 55, 207-216 https://doi.org/10.1023/A:1007842013257
  23. Yoon, J. H. 1982a. Numerical experiment on the circulation in the Japan Sea. I. Formation of the East Korean warm current. J. Oceanogr., 38, 43-51
  24. Yoon, J. H. 1982b. Numerical experiment on the circulation in the Japan Sea. III. Mechanism of the nearshore branch of the Tsushima Current. J. Oceanogr., 38, 125-130
  25. Yoon, J. H. and H. Kawamura. 2002. The formation and circulation of the intermediate water in the Japan Sea. J. Oceanor., 58, 197-211 https://doi.org/10.1023/A:1015893104998