• Title/Summary/Keyword: Sea algae

Search Result 318, Processing Time 0.022 seconds

Effect of Algal Fraction to Particulate Organic Matter in the Upper Regions of a Brackish Lake Sihwa (시화호 상류 기수역에서 입자성유기물에 대한 조류영향)

  • Choi, Kwangsoon;Kim, Sea-Won;Kim, Dong-Sub;Heo, Woomyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.499-506
    • /
    • 2013
  • To estimate the effect of algae to particulate organic matter in the upper regions of brackish Lake Sihwa, temporal and spatial variations of particulate organic carbon (POC) and phytoplankton pigments (chlorophyll a; Chl-a, pheophytin-a; Pheo-a), and their relationships were studied at seven sites of the brackish regions from March to October 2005 and 2006. POC concentration varied from 1.0 to $76.6mgL^{-1}$ (mean $7.4mgL^{-1}$), with maximal concentrations occurring in the middle parts of the study area in spring of 2005 and 2006. Concentrations of Chl-a and Pheo-a varied from 1.3 to $942.9{\mu}gL^{-1}$ (mean $71.0{\mu}gL^{-1}$) and $1.4{\sim}1,545.5{\mu}gL^{-1}$ (mean $59.9{\mu}gL^{-1}$), respectively, and corresponded closely with variation in POC. During the study period Pheo-a concentration was 44.2% of total Chl-a, implying that non-living or inactive phytoplankton is also the important part of phytoplankton-derived POC in brackish regions of Lake Sihwa. From the positive linear relationships between POC and phytoplankton pigments (POC with Chl-a (r=0.93), total Chl-a (r=0.88), and Pheo-a (r=0.81)), it is suggested that phytoplankton was a significant component of POC in the upper regions of brackish Lake Sihwa. On the other hand, the ratios of POC/Chl-a and POC/total Chl-a (Chl-a+Pheo-a) were 82.9 and 35.9, respectively. The ratio of POC/total Chl-a is similar to those reported in previous studies, including 40~60 in estuaries. This study suggests that Pheo-a concentration is considered in estimation of POC concentration from phytoplankton pigments in aquatic systems with high content of Pheo-a, like an upper region of blackish Lake Sihwa.

Analysis of Sinjido Marine Ecosystem in 1994 using a Trophic Flow Model (영양흐름모형을 이용한 1994년 신지도 해양생태계 해석)

  • Kang, Yun-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.180-195
    • /
    • 2011
  • A balanced trophic model for Sinjido marine ecosystem was constructed using ECOPATH model and data obtained 1994 in the region. The model integrates available information on biomass and food spectrum, and analyses ecosystem properties, dynamics of the main species populations and the key trophic pathways of the system, and then compares these results with those of other marine environments. The model comprises 17 groups of benthic algae, phytoplankton, zooplankton, gastropoda, polychaeta, bivalvia, echinodermata, crustacean, cephalopoda, goby, flatfish, rays and skates, croaker, blenny, conger, flatheads, and detritus. The model shows trophic levels of 1.0~4.0 from primary producers and detritus to top predator as flathead group. The model estimates total biomass(B) of 0.1 $kgWW/m^2$, total net primary production(PP) of 1.6 $kgWW/m^2/yr$, total system throughput(TST) of 3.4 $kgWW/m^2/yr$ and TST's components of consumption 7%, exports 43%, respiratory flows 4% and flows into detritus 46%. The model also calculates PP/TR of 0.012, PP/B of 0.015, omnivory index(OI) of 0.12, Fin's cycling index(FCI) of 0.7%, Fin's mean path length(MPL) of2.11, ascendancy(A) of 4.1 $kgWW/m^2/yr$ bits, development capacity(C) of 8.2 $kgWW/m^2/yr$ bits and A/C of 51%. In particular this study focuses the analysis of mixed trophic impacts and describes the indirect impact of a groupb upon another through mediating one based on 4 types. A large proportion of total export in TST means higher exchange rate in the study region than in semi enclosed basins, which seems by strong tidal currents along the channels between islands, called Sinjido, Choyakdo and Saengildo. Among ecosystem theory and cycling indices, B, TST, PP/TR, FCI, MPL and OI are shown low, indicating the system is not fully mature according to Odum's theory. Additionally, high A/C reveals the maximum capacity of the region is small. To sum up, the study region has high exports of trophic flow and low capacity to develop, and reaches a development stage in the moment. This is a pilot research applied to the Sinjido in terms of trophic flow and food web system such that it may be helpful for comparison and management of the ecosystem in the future.

Understanding of Phytoplankton Community Dynamics Through Algae Bioassay Experiment During Winter Season of Jinhae bay, Korea (생물검정실험을 통한 동계 진해만 식물플랑크톤의 군집 변동 특성 파악)

  • Hyun, Bong-Gil;Shin, Kyoung-Soon;Kim, Dong-Sun;Kim, Young-Ok;Joo, Hae-Mi;Baek, Seung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.27-38
    • /
    • 2011
  • The distributions of phytoplankton assemblages and environmental factors in Jinhae Bay and their relationships were investigated to estimate the potential limiting nutrient for phytoplankton growth and community structure. In situ algal bioassay experiments were also conducted to assess the species-specific characteristics in phytoplankton responses under different nutrient conditions (control, N(+) and P(+) treatment). During the study periods, bacillariophyceae and cryptophyceae occupied more than 90% of total phytoplankton assemblages. Phytoplankton standing crops in the inner part of Masan Bay were higher than that of Jinhae Bay. The DIN:DIP ratio, pH and transparency showed the significant positive correlation with phytoplankton biomass. According to cluster and multidimensiolnal scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western part of Jinhae bay where cryptophyta species were dominated. The second group was distinguished from inner stations in Masan Bay. These stations showed low transpancy and high DIN:DIP ratio. The other cluster included the stations from the eastern part and central part of Jinhae Bay, which was characterized by the high DSi:DIP ratio and dominant of diatom species. Phosphorous (P) was limited in Masan Bay due to significantly increases in the phytoplankton abundances. Based on stoichiometric limitation and algal bio-assay in Jinhae Bay, nitrogen (N) was a major limiting factor for phytoplankton production. However, silicate (Si) was not considered as limiting factor, since Si/DIN and Si/P ratio and absolute concentration of nutrient did not create any potential stoichiometric limitation in the bay. This implies that high Si availability in winter season contributes favorably to the maintenances of diatom species.

Bioecological Characteristics of Coral Habitats around Moonsom, Cheju Island, Korea I. Environment Properties and Community Structures of Phytoplankton (제주도 문섬 산호서식지 주변의 생물생태학적 특성 I. 환경특성과 식물플랑크톤의 군집구조)

  • Choa, Jong-Hun;Lee, Joon-Baek
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • Environmental factors and phytoplankton community have been bimonthly investigated in order to clarify the bioecological characteristics of coral habitats around Moonsom at the southern Cheju Island from September 1995 to July 1996. Annual mean temperature and annual mean salinity were $17.4^{\circ}C$ and 34.06 psu, respectively, showing lower temperature-higher salinity in winter and higher temperature-lower salinity in summer, which means such conditions are inadequate for coral reef formation. Nutrient concentrations represent that total nitrogen ranged from $0.07{\sim}10.08\;{\mu}M$, phosphate from $0.05{\sim}1.70\;{\mu}M$, and silicate from $3.08{\sim}21.86\;{\mu}M$. The N/P ratio showed the range of 9.59-10.60 with decreasing offshore-ward, which means the phytoplankton community could be limited by nitrogen sources. Annual mean euphotic depth was 32.0m (18.9m-48.6m) with difference according to season and reveals the close relationship with the depth of coral distribution. Chlorophyll a concentrations of phytoplankton ranged from $0.12{\sim}1.51\;{\mu}g\;L^{-1}$ and standing crops from $1.5{\times}10^3{\sim}7.0{\times}10^5\;cells\;L^{-1}$, showing higher at inshore than at offshore with a blooming in May. A total of 128 species of phytoplankton occurred in all stations, representing 99 spp. of diatoms, 26 spp. of dinoflagellates, 2 spp. of silicoflagellates and 1 sp. of blue-green algae. Diatoms are main taxa in all seasons except for occupying by dinoflagellates in summer. Among dominant species, fParalia sulcata (Ehrenberg) Cleve and Cylindrotheca closterium (Ehrenberg) Lewin & Reimann were predominant and are likely to be main food sources for coral community. Annual mean species diversity index (H') was 1.84, showing lower than around the coast line of Cheju Island.

  • PDF

The Microalgal Attachment and its Growth on the Artificial Surfaces Immersed in Seawater: I. Attachment and Micro-succession (해수에 잠긴 인공기질 표면에서 미세조류의 부착과 성장: I. 부착 및 천이)

  • Shim, Jae-Hyung;Kang, Jung-Hoon;Cho, Byung-Cheol;Kim, Woong-Seo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.249-260
    • /
    • 1998
  • To understand the attachment of micro algae and their subsequent growths on artificial surfaces immersed in seawater, the relationship between attachment of diatoms on the immersed artificial substrates and species pool in the surrounding water was investigated. We used acryl slides for the study of diatom attachment and examined the surrounding water samples collected in Incheon Harbour from July 1995 to February 1997. Variations of species composition and abundances by exposure time in seawater were investigated during the early phase of biofilm formation on various substrates, e.g. glass, acryl, titanium, copper and antifouling paint-treated slides. Immigration rates of diatoms to acryl slides during spring and winter were significantly correlated with the abundance of benthic diatoms in surrounding water ($r^2$=0.78, p<0.01, n=42), suggesting that immigration rates were affected by variations of benthic diatom abundances in surrounding water. Immigration coefficient of monoraphid diatoms was 5 times higher than that of biraphid diatoms, but relative abundance of monoraphid diatoms was 3 times lower than that of biraphid diatoms on acryl slides in spring. In winter, immigration coefficient and relative abundance of centric diatoms were higher compared to other raphe forms. These results suggest that the attachment of diatoms seems to be caused by the abundance and immigration coefficients of benthic diatoms in surrounding water. Pennate diatoms predominantly attached to all artificial surfaces throughout all experimental periods. Interestingly, centric diatoms predominantly attached to all artificial surfaces in winter. Hantzschia virgata, Licmophora abbreviata and Melosira nummuloides appeared dominantly on antifouling paint-treated slides, probably being tolerant of the antifouling paint. During incubations, the abundance of attached diatoms increased exponentially on glass, titanium and acryl slides with exposure time. The maximum abundance was highest on glass slide, followed by acryl, titanium, copper and antifouling paint-treated slides. The growth rates of attached diatom community on all artificial surfaces were higher at temperature of $24-25^{\circ}C$ than that of $2-3^{\circ}C$. The growth rate of attached diatoms on glass slide was generally higher compared to other slides during the study period. Dominant morphotypes of observed species with exposure time in seawater were prostrate form Amphora coffeaeformis, fan shape Synedra tabulata, stalk type Licmophora paradoxa and chain type M. nummuloides. A micro-succession in the attached microalgal community was observed. The composition of dominant species seems to be the result of species-specific response to gradually limited space with development of microalgal film.

  • PDF

The Microalgal Attachment and its Growth on the Artificial Surfaces Immersed in Seawater: II. Chlorophyll a and Primary Productivity (해수에 잠긴 인공기질 표면에서 미세조류의 부착과 성장: II. 엽록소와 일차생산력)

  • Shim, Jae-Hyung;Kang, Jung-Hoon;Cho, Byung-Cheol;Kim, Woong-Seo;Pae, Se-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.136-143
    • /
    • 1999
  • To understand the growth of attached microalgae to the immersed artificial surfaces in seawater with exposure time, chlorophyll a (chl a) concentration and abundance of attached microalgae to glass slides, and primary productivity and chl a concentration on coverglasses were investigated in Incheon Harbour in May, June 1996 and January-February 1997. Chl a concentrations of microalgae and abundances of diatoms attached to glass slides reached 62.5 mg chl a $m^{-2}$ and $144{\times}10^3$ cells $cm^{-2}$, respectively, during the study period. Chl a concentrations increased with exposure time, and they were significantly correlated with the abundances of attached diatoms ($r^2=0.79$, p<0.001). The chl a concentrations of attached micro algae on coverglass reached the maximum values of 31.1 mg chl a $m^{-2}$ and 65.4 mg chl a $m^{-2}$, and then decreased in May, June 1996. But in January-February 1997, the chl a concentration increased continuously up to 98.9 mg chl a $m^{-2}$. The primary productivity reached the maximum values of 63.1 mgC $m^{-2}\;h^{-1}$, 347.0 mgC $m^{-2}\;h^{-1}$ and 78.3 mgC $m^{-2}\;h^{-1}$, respectively, in May, June and January-February. The primary productivity in May and June varied in accordance with chl a concentrations. But in January-February, the primary productivity decreased from 26 days of exposure while chl a concentration continued to increase. Two cases that primary productivity decreased abruptly seemed to be caused by decrement of chl a and light specific $P^B$ (chl a specific primary productivity) (May and June) and by decrement of light specific $P^B$ due to photoinhibition (January-February). The results of present study indicated that chl a concentrations and the primary productivity of microalgae attached to artifical surfaces immersed in seawater would expedite analysis of dynamics of biomass and physiological status of attached microalgae during biofilm formations.

  • PDF

Eutrophication and Freshwater Red-tide Algae on Early Impoundment Stage of Jeolgol Reservoir in the Paikryeong Island, West Sea of South Korea (백령도 절골저수지의 부영양화와 담수적조)

  • Lee, Heung-Soo;Hur, Jin;Park, Jae-Chung;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.271-283
    • /
    • 2006
  • A systematic water quality survey was conducted in August, 2005 for a drinking water supply reservoir (the Jeolgol reseuoir located in an island), which is at an early stage of impoundment, to investigate the causes of water color deterioration of the reservoir and the clogging of filter beds of a water treatment plant. The reservoir shape was simple and its average depth was 5.5 m, increasing from upreservoir toward the downreservoir end near the dam. Dissolved oxygen (DO) and chloropllyll-a (chi-a) showed a large variation while water temperature had a smaller range. Transparency ranged from 0.6 to 0.9 m (average 0.7 m). The average value of turbidity was 9.3 NTU, ranging from 8.0 ${\sim}$ 12.1 NTU. The transparency and the turbidity appear to be affected by a combination of biological and non-biological factors. The poor transparency was explained by an increase of inorganic colloids and algal bloom in the reservoir. The blockage of the filter bed was attributed to the oversupply of phytoplanktons from the reservoir. The range and the average concentration of chi-a within the reservoir were 31.6 ${\sim}$ 258.9 ${\mu}g\;L^{-1}$, 123.6 ${\mu}g\;L^{-1}$ for the upper layer, and 17.0 ${\sim}$ 37.4 ${\mu}g\;L^{-1}$, 26.5 ${\mu}g\;L^{-1}$ for the bottom layer, respectively. A predominant species contributing the algal bloom was Dinophyceae, Peridinium bipes f. occultatum. The distribution of Peridinium spp. was correlated with chi-a concentrations. The standing crop of phytoplankton was highest in the upreservoir with $8.5\;{\times}\;103\;cells\;mL^{-1}$ and it decreased toward the downresevoir. Synedra of Bacillariophyceae and Microcystis aeruginosa of Cyanophyceae appeared to contribute to the algal bloom, although they are not dominated. It is mostly likely that sloped farmlands located in the watershed of the reservoir caused water quality problems because they may contain a significant amount of the nutrients originated from fertilizers. In addition, the aerators installed in the reservoir and a shortage of the inflowing water may be related to the poor water quality. A long-term monitoring and an integrated management plan for the water quality of the watersheds and the reservoir may be required to improve the water quality of the reservoir.

Origin and Source Appointment of Sedimentary Organic Matter in Marine Fish Cage Farms Using Carbon and Nitrogen Stable Isotopes (탄소 및 질소 안정동위원소를 활용한 어류 가두리 양식장 내 퇴적 유기물의 기원 및 기여도 평가)

  • Young-Shin Go;Dae-In Lee;Chung Sook Kim;Bo-Ram Sim;Hyung Chul Kim;Won-Chan Lee;Dong-Hun Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.99-110
    • /
    • 2022
  • We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ 15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter(OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to -20.4‰ for δ13 CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: -21.6‰ to -21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns(p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources(e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.