• Title/Summary/Keyword: Scribing depth

Search Result 18, Processing Time 0.02 seconds

Experimental Study on the Surface Defects of Scribed Glass Sheets (절단 유리판의 표면결함에 관한 실험적 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.332-337
    • /
    • 2008
  • This paper presents the surface defect analysis based on the experimental investigation of scribed glasses. The scribing process by a diamond wheel cutter is widely used as a reliable and inexpensive method for sizing of glass sheets. The wheel cutter generates a small median crack on the glass surface, which is then propagated through the glass thickness for complete separation. The surface contour patterns in which are formed during a scribing process are strongly related to wheel cutter parameters such as wheel tip surface finish, tip angle and wheel diameter, and cutting process parameters such as scribing pressure, speed and tooling technique. The scribed surface of a glass sheet provides normal Wallner lines, which represent regular median cracks and crack propagation in glass thickness, and abnormal surface roughness patterns. In this experimental study, normal and abnormal surface topographic patterns are classified based on the surface defect profiles of scribed glass sheets. A normal surface of a scribed glass sheet shows regular Wallner lines with deep median cracks. But some specimens of scribed glass sheets show that abnormal surface profiles of glass sheets in two pieces are represented by a chipping, irregular surface cracks in depth, edge cracks, and combined crack defects. These surface crack patterns are strongly related to easy breakage of the scribed glass imposed by external forces. Thus the scribed glass with abnormal crack patterns should be removed during a quality control process based on the surface defect classification method as demonstrated in this study.

CO2 Laser Scribing Process of Soda Lime Glass (소다석회유리의 CO2 레이저 스크라이빙 가공)

  • Kang, Seung-Gu;Shin, Joong-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.74-81
    • /
    • 2019
  • This study reports the CW $CO_2$ laser scribing of soda lime glass. In this study, scribing experiments are carried out at different laser powers, scan speeds, and focal positions to investigate the effect of the process parameters on the interaction characteristics between a laser beam and glass. In particular, the interaction characteristics are analyzed and described with the input laser energy per unit length. According to the experimental results, the damage threshold for the glass surface was found to exist between 0.072 and 0.08 J/mm. The input laser energy in this region induced partial melting of the surface and grain-shaped cracks. These cracks tended to increase as the input laser energy increased. At the laser input energy larger than 1 J/mm, a huge crack propagating along the scan direction was produced, and the volume below the scribed area was fully melted. The growth of this crack finally resulted in the complete cutting of the glass at the input laser energy above 8 J/mm. It was found that both the width and depth of the scribed line increased with increasing input laser energy. For the beam focusing at the rear surface, the width of the scribed line varied irregularly. This could be ascribed to the increased asymmetry of the beam intensity distribution when the laser beam was focused at the rear surface. Under this condition, a large burr was only produced on one side of the scribed line.

Ultrashort pulse laser induced PI film scribing (극초단파 레이저를 이용한 PI 필름 가공 기술개발)

  • Kim, Tae-Dong;Lee, Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.307-311
    • /
    • 2017
  • Ultra short pulse laser processing with the PI (polyimide) substrate is conducted to increase flexibility and radius of curvatures. A femtosecond laser is used to perform micro machining by minimizing the heat effect in PI substrate. The laser processing according to the parameters, such as fabricated line width, depth, laser power, distance between lines, is carried out to understand the characteristics of fabricated lines. A bending test is carried out to evaluate bending shapes and the radius of curvature after bending and spreading it 1000 times. The results demonstrates that the radius of curvature decreases in deepen lines and increases with the augment of the number of the fabricated lines, and distance between lines.

The Characteristic of Passive Elements on Aluminum Nitride Substrate (AIN 기판의 수동 소자 특성)

  • Kim, Seung-Yong;Yook, Jong-Min;Nam, Choong-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.257-262
    • /
    • 2008
  • In this paper, the key parameters of $CO_2$ laser(focus depth, air blow rate, total laser beam time, number of pulse) are experimented for thru-hole and scribing line on AIN(aluminum nitride) substrate with high thermal conductivity. And, microstrip line & spiral planar inductor are fabricated on AIN substrate using 5 um Cu-plating with self-masking technique. The microstrip line of AIN has 0.1 dB/mm attenuation at 10 GHz and 6 nH spiral planar inductor has 56 maximum quality factor at 1 GHz. Thus, the AIN substrate is promising for GHz applications of high power area.

Experimental Study on Cutting State of Glass by Ultrasonic Scriber (초음파 절단기에 의한 유리 절단면의 상태에 관한 실험적 검토)

  • Lee Chai-Bong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.212-216
    • /
    • 2005
  • In an ultrasonic glass scriber, the effect of ultrasonic vibration and its optimum driving frequency were investigated experimentally. To investigate the optimum ultrasonic frequency theoretically, the vibration model of the ultrasonic scriber is assumed. The frequency for maximum amplitude of acceleration is obtained theoretically. To investigate the depth of cutting edge corresponding the each frequency. The quartz glass plate specimen with a dimension of $200mm(L){\times}30mm(W){\times}3mm(T)$ is selected. The ultrasonic transducer is operated by the constant acceleration amplitude for the every frequency. The maximum crack depth was generated when the driving frequency was 18.35kHz. These results were in good agreement with those of the calculated model theoretically.

  • PDF

Surface Damage Characteristics of Self-Assembled Monolayer and Its Application in Metal Nano-Structure Fabrication (자기 조립 분자막의 표면파손특성 및 미세 금속 구조물 제작에의 응용)

  • Sung, In-Ha;Kim, Dae-Eun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.40-44
    • /
    • 2002
  • The motivation of this work is to use SAM(Self-Assembled Monolayer) for developing a rapid and flexible non-photolithographic nano-structure fabrication technique which can be utilized in micro-machining of metals as well as silicon-based materials. The fabrication technique implemented in this work consists of a two-step process, namely, mechanical scribing followed by chemical etching. From the experimental results, it was found that thiol on copper surface could be removed even under a few nN normal load. The nano-tribological characteristics of thiol-SAM on various metals were largely dependent on the native oxide layer of metals. Based on these findings, nano-patterns with sub-micrometer width and depth on metal surfaces such as Cu, Au and Ag could be obtained using a diamond-coated tip.

  • PDF

Analysis of a micro-processed sample surface using SCM and AFM (공초점현미경과 원자현미경을 이용한 초정밀 가공된 시료 표면의 영상측정)

  • Kim Jong-Bae;Bae Han-Sung;Kim Kyeong-Ho;Nam Gi-Jung;Kwon Nam-Ic
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.577-580
    • /
    • 2005
  • Surface quality of a micro-processed sample with laser has been investigated by using of scanning confocal microscope(SCM) and atomic force microscope(AFM). Samples are bump electrodes and ITO glass of LCD module used in a mobile phone and a wafer surface scribed by UV laser. A image of $140\times120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a x-axis and y-axis are 1kHz and 1Hz, respectively. AFM is able to measure correctly hight and width of ITO and scribing depth and width of a wafer with a resolution less than 300 . However, the scan speed is slow and it is difficult to distinguish a surface composed of different nm kinds of materials. Results show that SCM is preferable to obtain a image of a sample composed of different kinds of material than AFM because the intensity of a reflected light from surface is different from each material.

  • PDF

Analysis of a processed sample surface using SCM and AFM (공초점현미경과 원자현미경을 이용한 가공된 시료 표면의 형상측정)

  • Bae Han-Sung;Kim Kyeong-Ho;Moon Seong-Wook;Nam Gi-Jung;Kwon Nam-Ic;Kim Jong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.52-59
    • /
    • 2006
  • Surface qualities of a micro-processed sample with a pulse laser have been investigated by making use of scanning confocal microscope(SCM) and atomic force microscope(AFM). Samples are bump electrodes and ITO glass of LCD module used in a mobile phone and a wafer surface scribed by UV laser. A image of $140{\times}120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a x-axis and y-axis are 1kHz and 1Hz, respectively. AFM is able to correctly measure the hight and width of ITO, and scribing depth and width of a wafer with a resolution less than 300nm. However, the scan speed is slow and it is difficult to distinguish a surface composed of different kinds of materials. Results show that SCM is preferable to obtain a image of a sample composed of different kinds of material than AFM because the intensity of a reflected light from the surface is different for each material.