• Title/Summary/Keyword: Screw pitch

Search Result 77, Processing Time 0.027 seconds

Mechanical Performance Comparison of Pedicle Screw Based on Design Parameters: Dual Lead and Dual Pitch (척추경 나사못의 디자인이 고정력 및 구동 토크에 미치는 영향 분석: 이중 나사 및 이중 피치 나사)

  • Choi, Sun-Gak;Cha, Eun-Jong;Kim, Kyung-Ah;Ahn, Yoon-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.134-139
    • /
    • 2018
  • One of the most common problems with pedicle screw system is pullout of the screw. This study was performed to evaluate the pullout strength and driving torque of newly designed pedicle screws. The design of three type screws were standard pedicle screw, which had single lead threaded and single pitched design (Type A), single pitched and dual lead threaded pedicle screw (Type B), dual pitched and dual lead threaded pedicle screw (Type C), respectively. The tests were performed in accordance with the ASTM standards using polyurethane (PU) foam blocks. There was no significant difference in pullout strength among three types of screw. Type B and Type C exhibited higher insertion torque and removal torque than Type A, respectively (p<0.05). Pedicle screws newly developed with dual pitched and dual lead threaded design showed higher driving torque without decrease in pullout strength compared to the standard pedicle screw and could be inserted more rapidly with the same number of revolutions.

Evaluation of Clamping Characteristics for Subminiature Screws According to Thread Angle Variation (초소형 나사의 나사산 각도변화에 따른 체결특성 평가)

  • Min, Kyeong Bin;Kim, Jong Bong;Park, Keun;Ra, Seung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.839-846
    • /
    • 2014
  • Recent trends in the miniaturization and weight reduction of portable electronic parts have driven the use of subminiature screws with a micrometer-scale pitch. As both screw length and pitch decrease in subminiature screws, the resulting clamping force becomes diminishes. In this work, Finite element (FE) analysis is performed to evaluate clamping force of a screw assembly, with a comparison with experimental result. To improve clamping force of subminiature screws, a new screw design is considered by modifying screw thread angle: the thread angle is varied as an asymmetric way unlike the conventional symmetric thread angle. FE analyses are then performed to compare the clamping characteristics of each subminiature screw with different thread angle. The effect of thread angles on the clamping force is then discussed in terms of structural safety for both positive and negative screws.

Properties of Mechanical Joint by Carbon Fiber/Epoxy Sandwich Composite Panels (탄소섬유/Epoxy 샌드위치 복합재판넬의 기계적 취부특성평가)

  • Oh, K.;Lee, S.;Jeong, J.;Cho, S.;Kim, J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.121-124
    • /
    • 2005
  • This paper was about experimental test properties by mechnical joint of CF1263/Epoxy Al honeycomb panels. In case of mechanical joint using screw, nut shall be secured over than minimize third screw pitch. In case of insert backsheet for increase of joint force, increase weight for assemble by screw pitch. In case of insert backsheet with CF1263/Epoxy, predominant save weight and minimazer of displacement by tensile weight moreover predominant strength. In case of mechanical joint by rivet, rivet of Monobolt has over-hole in hole of CF1263/Epoxy but rivet of PROTRUDING has predominant of mechanical joint.

  • PDF

Channel Design of Decanter-Type Centrifuge (I) - Particles′ Suspension and the Channel Size (원심분리기의 채널 설계(I) - 입자의 부유문제와 채널 크기)

  • 서용권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.148-155
    • /
    • 2003
  • In this paper, based on the concept of solid particles' hovering problem the working formula for the channel design of a Decanter-type centrifuge were derived. The Shields' diagram and its curve-fitting formula were used in determining the criterion of particle size for the sediment. By using these formula the designer can determine the sectional configuration of the channel, such as the liquid depth, the normal pitch of the screw-blade arrangement and the bowl diameter.

Comparison of screw-in effect of three NiTi file systems used by undergraduates (학생들이 사용한 세 종류 NiTi file systems의 screw-in effect 비교)

  • Oh, Seung-Hei;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.6
    • /
    • pp.477-484
    • /
    • 2006
  • The purposes of this study were to compare the apical terminus width of simulated curved root canal prepared with three NiTi file systems used by undergraduates for evaluation the effects of flute angle and pitch or radial land on reducing screw-in effect and to determine more safe NiTi file system for inexperienced operators. Fifty inexperienced undergraduate students prepared 150 simulated curved root canals in resin blocks with three NiTi file systems ; ProFile$^{(R)}$, Hero Shaper$^{(R)}$, K3$^{TM}$. The electric motor set at a speed of 300 rpm and torque of 30 in a 16 : 1 reduction handpiece was used. The simulated root canal was prepared to ISO #25 sizes with each file system. The scanned images of pre- and post-instrumented canal of resin block were superimposed. To evaluate the screw-in effect of three NiTi file systems, apical terminus width of root canal was measured from superimposed images and statistical analysis was performed. There were significant differences in three NiTi flle systems. ProFile$^{(R)}$ had significantly smaller width than Hero Shaper$^{(R)}$ and K3$^{TM}$"" (P < 0.05), but no significant difference was observed between K3$^{TM}$ and Hero Shaper$^{(R)}$. Under the condition of this study, active file system (Hero SHaper$^{(R)}$, K3$^{TM}$) with variable pitch and helical angle had more screw-in effect than passive file system (ProFile$^{(R)}$) with constant pitch and helical angle. It seems that the radial lands play more important role in reducing screw-in effect.

Effect of Screw Geometries on Pull-out Characteristics of Screw Anchor Piles Using Reduced Scale Model Tests (스크류 제원이 스크류 앵커 파일의 인발저항 특성에 미치는 영향에 관한 축소모형실험)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.5-15
    • /
    • 2012
  • This paper presents the results of an investigation into the pull-out characteristics of screw anchor piles for use in braced excavation and cut-slope. A series of reduced-scale model tests were performed on model screw anchor piles with different geometric characteristics such as screw size and pitch length. The results indicated that the pullout resistance increases with decreasing the pitch length for a given screw size. It was also observed that the pullout capacity of a screw anchor pile increases with the screw size up to a certain size beyond which the increase becomes minimal. The results are presented in such a way that the pullout characteristics of screw piles with different screw geometric characteristics can be identified. Practical implications of the findings are discussed.

Optimum Design of the Screw extruder using Thermo-mechanical Analysis

  • Cho, Seung-Hyun;Kim, Chung-Kyun
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.28-33
    • /
    • 2001
  • Screw conveyors are used extensively in industrial for conveying and elevating materials. Despite their apparent simplicity, the mechanics of the conveying action is very complex. so many engineers depend on experiential data. Capacities of screw are pumping, steady flow of polymer melts, steady volumetric throughput etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. by computation volumetric efficiency increases as rotating velocity increases and decreases as friction coefficient increases. also it decreases with short pitch length. and double flight screw is more effective than single flight screw. The temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on volumetric throughput efficiency of the screw and thermo-mechanical characteristics of screw.

  • PDF

Analysis of Instantaneous Screw Axis in 5-SS Multi-link Suspensions Using Line Geometry (선 기하학을 이용한 5-SS 멀티 링크 현가장치의 순간 스크류 축 해석)

  • Choi, Jai-Seong;Shim, Jae-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.635-640
    • /
    • 2000
  • This paper presents the analysis method of the instantaneous screw axis using line geometry in bump and rebound motion of 5-SS multi-link suspensions. Instantaneous screw axis is based on screw motion, and screw motion of zero pitch can be expressed as $Pl{\ddot{u}}cker$ line coordinates of line geometry instead of screw coordinates. In screw coordinates, twist and wrench are described by components of instantaneous screw axis. For instantaneous motion of wheel assembly, the principle of virtual work with twist and wrench is applied to 5-SS multi-link suspension, and it makes 5 linear equations. Therefore, it is possible to find instantaneous screw axis by solving these equations. This analysis by line geometry demands geometric values only, such as the locations of spherical joints in the case of multi-link suspensions.

  • PDF

Mechanical and Operational Factors Affecting the Efficiency of Rice Polishing Machines (정미기의 능률에 미치는 기계적 요인및 작동조건에 관한 연구)

  • No, Sang-Ha
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.15-15
    • /
    • 1976
  • In analyzing the operational characteristics of a rice whitening machine, the internal radial pressure of the machine was measured using strain gage equipment. Changes in cylinder and feed screw configurations, screen type, cylinder speed and counter-pressure levels were examined to determine their impact on the quality and quantity of milled rice and the performance of the machine. The results are summarized as follows: 1. The internal radial pressure in the whitening chamber varied with the surface condition of the grain being processed. During the first or second pass through the machine, pressure was relatively low, reached a maximum after two to three passes with combinations I and II, three to six with combination III and then began to fall. 2. The pitch of the feed screw and the size of the feed gate opening which determine the rate of entry of grain into the whitening chamber, appeared to be the most important factor aff-::cting the degree of radial pressure, quality and quantity of milled rice and the efficiency of the machine. Using a feed screw with a wide pitch (4.8cm), radial pressure was relatively high and head rice recovery ratio \vere quite low. In this case capacity and machine effic?iency were much higher than obtained when using a feed screw with a narrow pitch (2.3cm). Very significant responses in radial pressure, head rice recovery rates and machine capacity were observed with changes in cylinder speed and counter-pressure levels when using the wide pitch feed screw. 3. The characteristics of the screen which surrounds the whitening chamber had an important effect on whitening efficiency. The existence of small protuberances on the original screen resulted in significant increases in both machine capacity and efficiency but without a significant decrease in head rice recovery or development of excessive radial pressure. Further work is required to determine the effects of screen surface conditions and the shape of the cylinderical steel roller on the rate of bran removal, machine efficiency and recovery rates. The size of the slotted perforations 0:1 the screen affects total milled rice recovery. The opening size on the original screen was fabricated to accommodate the round shape of Japonica rice varieties but was not suitable for the more slender Indica type. Milling Indica varieties with this screen resulted in a reduction in total milled rice recovery. 4. An increase in cylinder speed from 380 to 820 rpm produced a positive effect on head rice recovery for all machine combinations at every level of counter-pressure used in the tests. Head rice recovery was considerably lower at 380rpm using a wide screw pitch when compared to the results obtained at speeds from 600 to 820 r.p.m. The effects of cylinder speed On radial pressure, capacity and machine efficiency showed contrasting results, depending on the width of the feed screw pitch. With a narrow feed screw pitch (2.3cm), a direct proportional relationship was observed bet?ween cylinder speed and both radial pressure and machine efficiency. In contrast, using a 4.8 centimeter pitch feed roller produced a series of inverse relationships between the above variables. Based on the results of this study it is recommended when milling Indica type long grain rice varieties that the cylinder speed of the original machine be increased from 500-600 rmp up to a minimum of 800 rpm to obtain a greater abrasive effect between the grain and the screen. The pitch of the feed screw should be also reduced to decr?ease the level of internal radial pressure and to obtain higher machine efficiency and increased quality of milled rice with increased cylinder speeds. Further study on the interaction between cylinder speed and feed screw pitch is recommended. 5. An increase in the counter pressure level produced a negative effect On the head rice recovery with an increase in radial pressure, capacity, and machine efficiency over all combinations and at every level of cylinder speed. 6. Head rice recovery rates were conditioned primarily by the pressure inside the whitening chamber. According to the empirical cha racteristics curve developed in this study, the relationships of head rice recovery ($Y_h$) and machine capacity ($Y_c$/TEX>) to internal radial pressure ($X_p$) followed an inverse quadratic function and a linear function respectively: $$Y_h^\Delta=\frac{1}{{1.4383-0.2951X_p^\ast+0.1425X_p^{\ast\ast}}^2} , (R^2=0.98)$$$$Y_c^\Delta=-305.83+374.37X_p^{\ast\ast}, (R^2=0.88)$$The correlation between capacity and power consumption per unit of brown rice expressed in the following exponential function: $$Y_c^\Delta=1.63Y_c^{-0.7786^\{\ast\ast}, (R^2=0.94)$$These relationships indicate that when radial pressure increases above a certain range (1. 6 to 2.0 kg/$cm^2$ based On the results of the experiment) head ricerecovery decrea?ses in a quadratic relation with a inear increase in capacity but without any decrease in power consump tion per unit of brown rice. On the other hand, if radial pressure is below the range shown above, power consumption increases dramatically with a lin?ear decrease in capacity but without significant increases in head rice recovery. During the operation of a given whitening machine, the optimum radial pressure range or the correct capacity range should be selected by controlling the feed rate and/or counter-pressure keeping in mind the condition of the grain, particulary the hardness. It was observed that the total number of passes is related to radial pessure level, feed rate and counter-pressure level. The higher theradial pressure the fewer num?ber of pass required but with decreased head rice recovery. In particular, when using high feed rates, the total number of passes should be increased to more than three by reducing the counter-pressure level to avoid decreaseases in head rice recovery (less than 65 percent head rice recovery on the basis of brown rice) at every cylinder speed. 7. A rapid rise in grain temperature seemed to have a close relationship with the pressure generated inside the whitening chamber and, subsequently with head rice reco?very rates. The higher the rate of increase, the lower were the resulting head rice recoveries.