• 제목/요약/키워드: Screw Nozzle

Search Result 22, Processing Time 0.053 seconds

Cement Augmentation of Dynamic Hip Screw to Prevent Screw Cut Out in Osteoporotic Patients with Intertrochanteric Fractures: A Case Series

  • Rai, Avinash Kumar;Goel, Rajesh;Bhatia, Chirag;Singh, Sumer;Thalanki, Srikiran;Gondane, Ashwin
    • Hip & pelvis
    • /
    • v.30 no.4
    • /
    • pp.269-275
    • /
    • 2018
  • Purpose: The purpose of this study is to describe a method of inserting cement in the femoral head before fixation with dynamic hip screw to prevent screw cut out due to osteoporosis and to evaluate its clinical outcome in these patients. Materials and Methods: In this prospective study, 30 patients aged 60 years and older with intertrochanteric fracture were included. Bone mineral density was measured. After reaming of the femoral head and neck with a triple reamer and polymethyl methacrylate, bone cement was introduced into the femoral head using a customized nozzle and a barrel fitted on a cement gun. A Richard screw was inserted and the plate was fixed over the femoral shaft. Patients were mobilized and clinical outcomes were rated using the Salvati and Wilson's scoring system. Results: More patients included in this study were between 66 and 70 years old than any other age group. The most common fracture according to the Orthopaedic Trauma Association classification was type 31A2.2 (46.7%). The T-score was found to be $-2.506{\pm}0.22$ (mean${\pm}$standard deviation); all patients were within the range of -2.0 to -2.8. The duration of radiological union was $13.67{\pm}1.77$ weeks. Salvati and Wilson's scoring at 12 months of follow up was $30.96{\pm}4.97$. The majority of patients were able to perform their normal routine activities; none experienced implant failure or screw cut out. Conclusion: Bone cement augmentation may effectively prevent osteoporosis-related hardware complications like screw cut out in elderly patients experiencing intertrochanteric fractures.

Design and Fabrication of Tool Change Multi-nozzle FDM 3D Printer (툴 체인지 방식 멀티 노즐 3D프린터의 설계 및 제작)

  • Suk, Ik-hyun;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.38-44
    • /
    • 2021
  • To cater to the transition from single-color to multicolor/multi-material printing, this paper proposes a cartridge-replacing type multi-nozzle Fused Depositon Modeling(FDM) three-dimensional (3D) printer. In the test printing run, tool change failure/wobble/layer shift occurred. It was confirmed that improper support was the cause of this tool change failure. As a solution, spline and electromagnetic cartridges were designed. Wobble was caused by machine vibration and the motor stepping out. To minimize wobble, an additional Z-axis was installed, and the four-point bed leveling method was used instead of the three-point bed leveling method. The occurrence of layer shift was ascribed to the eccentricity of the Z-axis lead screw. Therefore, slit coupler was replaced with an Oldham type. In addition to the mechanical supplementation, the control environment was integrated to prevent accidents and signal errors due to wire connections. Before the final test printing run, a rectifier circuit was added to the motor to secure precise control stability. The final test printing run confirmed that the wobble/layer shift phenomenon was minimized, and the maximum error between layers was reduced to 0.05.

Preliminary power predication of waterjet driven craft (Waterjet 추진선의 초기 성능추정)

  • 최군일
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.90-94
    • /
    • 2001
  • A Waterjet has been widely used for the propulsion of various speed range of marine vehicles due to its many advantages compared with the conventional screw propellers. In this paper, a power prediction based on momentum flux method is presented for the preliminary estimation of required power and selection of propulsion system for the waterjet driven craft. A theoretical basis of the mechanism of the waterjet is given and some of the empirical formulas are given as well. Finally the influence of intake type and nozzle exit velocity on the efficiency will be discussed.

  • PDF

Waterjet Propulsion Model Experiment for Catamaran Ship (쌍동선의 워터제트 추진 모형시험)

  • Choi, G.I.;Min, K.S.;Ann, Y.W.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • A screw propeller is usually accepted as a propulsor of many kinds of ships. However, for high speed vessels, screw propeller has large cavitation area on the blades so propeller efficiency is decreased and erosion can be happened. To avoid this problem, supercavitating propeller and waterjet are generally used for high speed vessels. In this paper, we introduced the self-propulsion test procedure which has been developed for high speed vessels in Hyundai Maritime Research Institute. The model ship used in experiment represents catamaran about 5.3 m in length. To minimize the experimental errors, two impellers were driven by a single motor. Thrust was calculated by converting the measured pressure to flow rates at the nozzle exit. The test procedure is composed of resistance test, self propulsion test and analysis. In order to measure the pressure, pressure tabs were installed around the nozzle exit and connected to the pressure sensor by vinyl tube.

  • PDF

Buildability of 3D Printed Concrete Structures at Various Nozzle Speeds and Aspect Ratios (노즐이동속도와 변장비에 따른 3D 프린팅 콘크리트 구조물의 시공성)

  • Park, Ji-Hun;Lee, Jungwoo;Joh, Changbin;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.375-382
    • /
    • 2019
  • In this study, an experimental study on the buildability of the structure using the developed printing materials and equipment was performed. Experimental variables included the moving speed of nozzles(=80 and 100mm/s), the revolutions per minute (RPM) of screw in discharge buckets, and the aspect ratio(=1.67 and 5.00) reflecting wall length of the structures. Buildability of the 3D printed concrete structures was analyzed based on the maximum decomposition layer and collapse patterns of the structures according to the experimental variables. The nozzle movement speed of 80mm/s and the aspect ratio of 1.67 were favorable for 3D printing in this study. The collapse process of structure due to uneven layer decomposition was also analyzed through the relative displacement measurement of the lower part of the structure during printing.

The Couplings for ball-screw on high precision positioning (고정도 이송을 위한 공기정압커플링에 관한 연구)

  • 황성철;전도현;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.161-166
    • /
    • 2002
  • Recently, researches on precision machining of nato-order, especially in the field of optical components and semi-conductors have been under development very actively. A accuracy of machining and positioning in a critical issue in ultra-precision machining. This paper proposes a new positioning system which can give excellent dynamic characteristics and reduce errors in horizontal, vertical, pitching, and yawing motions. In this paper, we suggest a connecting mechanism (the couplings) to reduce motion errors such as chatter and runout while preserving the positioning accuracy. We verified the good performance in the new connecting systems with various coupling types, which we classified into the fixed type, the spring type, the aeroctatic-nozzle type, and the aeroctatic-porous type according to the way of reducing the chatter and error.

  • PDF

Optimum Injection Molding Condition Search With Process Monitoring System (공정 모니터링 시스템을 이용한 최적 사출 조건 설정)

  • Kang, J.K.;Cho, Y.K.;Chang, H.K.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.54-60
    • /
    • 2007
  • Optimum injection molding condition for a box mold was searched by the Response Surface Analysis(RSA) with the aid of process monitoring system(PMS). Process variables on the control panel of the injection molding machine such as barrel temperatures, screw speed profile, holding pressures, etc. cannot guarantee the uniformity of the material variables directly related with the state of the product in the mold cavity. In order to make sure the state of the resin in the cavity, pressures and temperatures in the cavity, runner and nozzle were monitored in the experiment with the PMS. To accomplish the consistency of the molding process, dependent variables such as the switchover point and holding time were searched with the PMS. With a proper objective function about deflection of the box-type product, the optimum injection molding condition was obtained.

Study of Single Screw Extrusion Conditions on the Formability of TPE-800L Tube (TPE-800L 튜브 성형성에 대한 단축 압출기의 제조공정에 관한 연구)

  • Yoon, Juil;Kang, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.77-83
    • /
    • 2018
  • Thermoplastic elastomers are being used increasingly throughout industry owing to their superior properties, such as superior elasticity, formability, and recoverability. Currently, research related to thermoplastic elastomers is focused on the development of composite elastomers by combining with various materials and the development of equipment. On the other hand, in the field of small and medium sized companies, it is necessary to study not only the application of these new materials, but also the process conditions that enable the extrusion of thermoplastic elastomers in inexpensive uniaxial screwing equipment. If extrusion is performed in a single screw extruder, it is important to maintain a uniform thickness through process control of the extruder. This study examined the effects of the processing temperature, which is an extrusion process variable, on the formability of a tube in the thermoplastic elastomer TPE-800L uniaxial extrusion process. The nozzle zone temperature is the most important factor in the extrusion of thermoplastic elastomer TPE-800L; the most excellent moldability was confirmed at $165-170^{\circ}C$.

An Experiment on the Manufacture of Free-Form Panel for Analysis of the Requirements of Concrete Extrusion Nozzles (콘크리트 압출 노즐의 요구사항 분석을 위한 비정형 패널 제작 실험)

  • Kim, Hye-Kwon;Youn, Jong-Young;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.91-92
    • /
    • 2023
  • With the development of technology, interest in the implementation of free-form buildings is increasing, and research on producing free-form panels is being conducted accordingly. Since free-form buildings are curved and consist of geometric shapes, there are many problems with the production technology of free-form panels that implement them. Due to the inability to reuse molds, the cost of disposal of construction waste and waste of manpower for assembly increase the construction period and construction cost. To improve these limitations, a 3D printed concrete nozzle for FCP production was developed. However, this technology is not quantitatively extruded according to the shape of the panel, and there is a problem that residues are generated. Therefore, an free-form panel extrusion experiment was conducted to analyze the limitations of existing nozzles and to analyze the requirements for the development of new concrete extrusion nozzles. Existing nozzles were unable to be quantitatively extruded, resulting in errors. Due to the weak pressure of the screw and the inability to adjust the internal pressure, detailed extrusion speed control was impossible, and residue generation in the opening and closing device seemed to be the cause. Therefore, a pump capable of quantitative concrete pressure transfer and a pressure control device for easy extrusion of concrete are required. In addition, it is judged that it is necessary to develop an opening and closing device and an extrusion device that do not generate residues. The results of this study are expected to provide information for FCP production and production and to be a basic study of technologies necessary for the production of free-form building panels.

  • PDF

Development of Accelerator Control System for Wet Shotcrete Spraying Equipment (습식 숏크리트 뿜칠 장비의 급결제 유량 제어 시스템 개발)

  • Tae-Ho, Kang;Soo-Ho, Chang;Soon-Wook, Choi;Jin-Tae, Kim;Bong-Gyu, Kim;Chulho, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • The wet shotcrete refers to a method in which all materials are mixed and then supplied to the spraying device, compressed air is added to the nozzle, and the spraying speed is improved to spray on the target surface. In order to reproduce the amount of shotcrete used in the wet method in the field and the situation at the laboratory scale, it is essential to control the discharge amount of the equipment. In this study, in order to increase the reproducibility of field conditions at the laboratory scale, a flow control system for shotcrete mortar spraying equipment was developed and applied to the equipment. To verify the developed equipment, a discharge control test using water and mortar was performed. In the developed control system, the discharge was smoothly controlled according to the user input value for the mono pump, but the discharge was not properly controlled according to the input value for the screw pump because of a reducer. When a speed reducer is attached, it is necessary to adjust the operation rate of the screw pump close to the target flow rate by increasing the operation rate of the screw pump while lowering the operation rate of the mono pump.