• Title/Summary/Keyword: Screen Material Performance

Search Result 45, Processing Time 0.024 seconds

The Korea Academia-Industrial cooperation Society (유리섬유 복합재료를 이용한 화재 비상통로용 스크린 소재 성능에 관한 연구)

  • Lee, Jung-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.653-659
    • /
    • 2018
  • High-rise buildings and complex facilities are a representative urban system for the masses, and it requires an increasing role of commodity and safety. Smoke and toxic gasses can cause accidents due to fire in these systems. The purpose of this study is to develop a fiber screen material for emergency evacuation passages that can be avoided quickly and safely in cases of disasters. The fiber screen material is applicable to folding devices for emergency evacuation passages. The material is different from general steel material in that it is lightweight with less burden during storage for a long time in a roll form in a folding device. It also has an excellent secondary function in that it is less affected by radiant heat. Three kinds of fiber screen materials were selected that have good flame retardancy and post-processing characteristics. A performance evaluation was performed by a heat shrinkage test, contact heat test, combustibility test, flame retardancy test, tensile strength test, and tear strength test. As a result, the lightweight fabric shows excellent performance through post-processing, and silicone resin coating can secure safety of the pizza by the fiber screen material performance and radiant heat. The optimum post-treatment conditions were evaluated by performing a burning test after coating two kinds of glass fibers and four types of flame-retardant silicone resins with different weight and thickness.

Preparation of Conductive Leather Gloves for Operating Capacitive Touch Screen Displays (정전용량방식 터치스크린에 작동하는 전도성 가죽장갑 소재의 제조)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.1018-1023
    • /
    • 2012
  • Smartphone is integrated into the daily lives of all types of people not even young generation. A touch screen display is a primary input device of a smart phone, a tablet computer, etc. While there are many tough technologies in existence, resistive and capacitive are dominant and currently lead the touch screen panel industry. And a capacitive touch screen panel widely used in smart phones is coated with a material that stores electrical charges. In this study, we tried to manufacture gloves produced with electro-conducting leather as a tool to operate a touch panel screen. Therefore, electrically conductive materials, Polyaniline(PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), and Carbon nanotubes (CNT) were applied to the surface of leather to be used as a touching operator for capacitive touch screen panel. The leather samples were treated by simple painting method; firstly, they were painted with aqueous solution containing each of the electrically conductive materials and then dried. This cycle was repeated three times. Consequently, the treated leather samples showed electrical conductivity and reasonable working performance to the capacitive touch screen. And, PANI showed the best performance and highest electrical conductivity, and then PEDOT and, CNT in decreasing order. This is because the solubilities of PANI and PEDOT show higher than dispersibility of CNT. Thus, the concentration of conducting polymers was greater than that of CNT in the treating solutions.

The Analysis on the Effect of Improving Aspect Ratio and Electrode Spacing of the Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 전극 종횡비 개선과 전극 간 간격이 효율에 미치는 영향 분석)

  • Kim, Min Young;Park, Ju-Eok;Cho, Hae Sung;Kim, Dae Sung;Byeo, Seong Kyun;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.209-216
    • /
    • 2014
  • The screen printed technique is one of the electrode forming technologies for crystalline silicon solar cell. It has the advantage that can raise the production efficiency due to simple process. The electrode technology is the core process because the electrode feature is given a substantial factor (for solar cell efficiency). In this paper, we tried to change conditions such as squeegee angle $55{\sim}75^{\circ}$, snap off 0.5~1.75 mm, printing pressure 0.6~0.3 MPa and 1.6~2.0 mm finger spacing. As a result, the screen printing process showed an improved performance with an increased height higher finger height. Optimization of fabrication process has achieved 17.48% efficiency at screen mesh of 1.6 mm finger spacing.

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Study on 3-dimension Image Process based on Organic light Emitting Diode (유기발광소자 (Organic Light Emitting Diode)를 이용한 3차원 영상에 대한 연구)

  • Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.497-499
    • /
    • 2005
  • A portable terminal assistant market grows rapidly every year and it requires many change in research on display devices. Among many newly developing methods, OLED(Organic Light Emitting Diode) is considered an advanced flat display device because its excellent characteristics, including high speed response, full color performance, low power consumption and flux of panel. However changes in the market of display shows that the market will require 3-dimensional images, but it is hard for existing 2-dimensional displays to make 3-dimensional images. Therefore we will try to find various methods such as holograms. In this paper, we will show existing flat displays can make 3-dimensional images by applying Lenticular Screen printing techniques on the organic semiconductor display device.

  • PDF

Cell Fabrication and Performances of SOFC prepared by DBM and SPM

  • Kim, Gwi-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.286-288
    • /
    • 2007
  • The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for solid oxide fuel cell, by the way, Ni-YSZ materials are used as anode of solid oxide fuel cell widely. In order to reduce production costs, we have fabricated single solid oxide fuel cell by doctor blade and screen printing method. Disk-type planar solid oxide fuel cell with an effective electrode area of about $7cm^2$ were fabricated and run for 500 h to investigate cell performance. The current density at a voltage of 0.7 V was $850mA/cm^2$.

Basic Study on the Regenerator of Stilting Engine (II) - Heat transfer and flow friction loss characteristics of the regenerator with wire screen matrix - (스털링기관용 재생기에 관한 기초연구 (II) - 철망을 축열재로 한 재생기의 전열 및 유동손실특성 -)

  • 김태한;이시민;이정택
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.529-536
    • /
    • 2002
  • The performance of stilting engine, in particular, its energy conversion efficiencies are critically influenced by the regenerator characteristics. The regenerator characteristics are influenced by effectiveness, void fraction. heat transfer loss and fluid friction loss in the regenerator matrix. These factors were influenced by the surface geometry and material properties of the regenerator matrix. The regenerator design goals arc good heat transfer and low pressure drop of working Bas across the regenerator. Various data for designing a wire screen matrix have been given by Kays and London(1984). The mesh number of their experiment. however, was confined below the No. 60. which seems rather small for the Stirling engine applications. In this paper. in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed mettled of matrix in oscillating flow as the same condition of operation in a Stirling engine. Seven kinds of sing1e wire screen meshes were used as the regenerator matrices. The results are summarized as follows; 1. While the working fluid flew slowly in the regenerator. the temperature difference was great at the both hot-blow(the working fluid flows from healer to cooler) and cold-blow(the working fluid flows from cooler to healer). On the other hand. while the working fluid flew fast. the temperature difference was not distinguished. 2. The No.150 wire screen used as the regenerator matrix showed excellent performance than tile others. 3. Phase angle variation and filling rate affected heat transfer or regenerator matrices. 4. Temperature difference between the inlet and outlet of the regenerator is very hish in degree of 120 phase angle.

Spinel Nanoparticles ZnCo2O4 as High Performance Electrocatalyst for Electrochemical Sensing Antibiotic Chloramphenicol

  • Van-Cuong Nguyen;HyunChul Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.152-160
    • /
    • 2024
  • In this study, ZnCo2O4 nanoparticles were synthesized via the coprecipitation method using different annealing temperatures from 200℃ to 800℃. By varying the treatment temperature, the morphology changed from amorphous to tetragonal, and finally to polygonal particles. As temperature increased, the sizes of the nanoparticles also changed from 5 nm at 200℃ to approximately 500 nm at 800℃. The fabricated material was used to modify the working electrode of a screen-printed carbon electrode (SPE), which was subsequently used to survey the detection performance of the antibiotic, chloramphenicol (CAP). The electrochemical results revealed that the material exhibits a good response to CAP. Further, the sample that annealed at 600℃ displayed the best performance, with a linear range of 1-300 μM, and a limit of detection (LOD) of 0.15 μM. The sensor modified with ZnCo2O4 also exhibited the potential for utilitarian application when the recovery in a real sample was above 97%.

Electrical Properties of Solar Cells With the Reactivity of Ag pastes and Si Wafer (Ag paste와 실리콘 웨이퍼의 반응성에 따른 태양전지의 전기적 성질)

  • Kim, Dong-Sun;Hwang, Seong-Jin;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.54-54
    • /
    • 2009
  • Ag thick film has been used for electrode materials with the excellent conductivity. Ag electrode is used in screen-printed silicon solar cells as a electrode material. Compared to photolithography and buried-contact technology, screen-printing technology has the merit of fabricating low-priced cells and enormous cells in a few hours. Ag paste consists of Ag powders, vehicles and additives such as frits, metal powders (Pb, Bi, Zn). Frits accelerate the sintering of Ag powders and induce the connection between Ag electrode and Si wafer. Thermophysical properties of frits and reactions among Ag, frits and Si influence on cell performance. In this study, Ag pastes were fabricated with adding different kinds of frits. After Ag pastes were printed on silicon wafer by screen-printing technology, the cells were fired using a belt furnace. The cell parameters were measured by light I-V to determine the short-circuit current, open-circuit voltage, FF and cell efficiency. In order to study the relationship between the reactivity of Ag, frit, Si and the electrical properties of cells, the reaction of frits and Si wafer on was studied with thermal properties of frits. The interface structure between Ag electrode and Si wafer were also measured for understanding the reactivity of Ag, frit and Si wafer. The excessive reactivity of Ag, frit and Si wafer certainly degraded the electrical properties of cells. These preliminary studies suggest that reactions among Ag, frits and Si wafer should optimally be controlled for cell performances.

  • PDF

Effects of Mesh Size in a Flat Evaporator and Condenser Cooling Capacity on the Thermal Performance of a Capillary Pumped Loop

  • Boo, Joon-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • The thermal performance of a flat evaporator for capillary pumped loop (CPL) applications was investigated. Two to four layers of coarse wire screen wicks were placed onto the heated surface to provide irregular passages for vapor flow. The evaporator and condenser were separated by a distance of 1.2 m and connected by individual liquid and vapor lines. The wall material was copper and the working fluid was ethanol. The experimental facility utilized a combination of capillary and gravitational forces for liquid return, and distribution over the evaporator surface. The tubing used for vapor and liquid lines was 9.35 mm or less in diameter and heat was removed from the condenser by convection of air. A heat flux of up to $4.9{\times}10^4$ $W/m^2$ was applied to a flat evaporator having dimensions of 100 mm by 200 mm, 20 mm thick. The thermal resistance of the system as well as the temperature characteristics of the system was investigated as the evaporator heat flux and the condenser cooling capacity varied. The performance of the evaporator and effect of condenser cooling capacity were analyzed and discussed.

  • PDF