DOI QR코드

DOI QR Code

The Analysis on the Effect of Improving Aspect Ratio and Electrode Spacing of the Crystalline Silicon Solar Cell

결정질 실리콘 태양전지의 전극 종횡비 개선과 전극 간 간격이 효율에 미치는 영향 분석

  • Kim, Min Young (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Park, Ju-Eok (Engineering of Engineer, McScience Inc.) ;
  • Cho, Hae Sung (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Kim, Dae Sung (Department of IT Convergence, Korea National University of Transportation) ;
  • Byeo, Seong Kyun (Department of IT Convergence, Korea National University of Transportation) ;
  • Lim, Donggun (Department of Electronic Engineering, Korea National University of Transportation)
  • 김민영 (한국교통대학교 전자공학과) ;
  • 박주억 ((주)맥사이언스) ;
  • 조해성 (한국교통대학교 전자공학과) ;
  • 김대성 (한국교통대학교 정보기술융합학과) ;
  • 변성균 (한국교통대학교 정보기술융합학과) ;
  • 임동건 (한국교통대학교 전자공학과)
  • Received : 2014.01.22
  • Accepted : 2014.03.24
  • Published : 2014.04.01

Abstract

The screen printed technique is one of the electrode forming technologies for crystalline silicon solar cell. It has the advantage that can raise the production efficiency due to simple process. The electrode technology is the core process because the electrode feature is given a substantial factor (for solar cell efficiency). In this paper, we tried to change conditions such as squeegee angle $55{\sim}75^{\circ}$, snap off 0.5~1.75 mm, printing pressure 0.6~0.3 MPa and 1.6~2.0 mm finger spacing. As a result, the screen printing process showed an improved performance with an increased height higher finger height. Optimization of fabrication process has achieved 17.48% efficiency at screen mesh of 1.6 mm finger spacing.

Keywords

References

  1. W. O. Filtvedt and M. Javidi, Sol. Energ. Mat. Sol. C., 94, 1980 (2010). https://doi.org/10.1016/j.solmat.2010.07.027
  2. J. Szlufcik and F. Duerinckx, Sol. Energ. Mat. Sol. C., 74, 155 (2002). https://doi.org/10.1016/S0927-0248(02)00060-0
  3. M. M. Hilali, A. Rohatgi, and S. Asher, IEEE Trans. Elec. Dev., 51, 948 (2004). https://doi.org/10.1109/TED.2004.828280
  4. M. Bahr, S. Kim, S. Sridharan, C. Khadilkar, A. Shaikh, and I. Kohler, Proc. of the 22nd European Photovoltaic Solar Energy Conference (2007) p. 1015.
  5. V. Shanmugam and J. Cunnusamy, Energy Procedia, 33, 64 (2013). https://doi.org/10.1016/j.egypro.2013.05.040
  6. V. Meemongkolkiat, M. Hilali, and A. Rohatgi, Photovoltaic Energy Conversion, B, 1293 (2003).
  7. M. M. Hilali and A. Rohatgi, Proc. 14th Workshop on Crystalline Silicon Solar Cells and Modules, (Colorado, 2004). p. 109.
  8. H. H. Kim and S. E. Park, Current Appl. Phys., 13, S34 (2013). https://doi.org/10.1016/j.cap.2013.01.008
  9. C. H. Lin, S. P. Hsu, W. C. Hsu, and L. A. Kosyachenko, Ed. (Intech, 2011).
  10. A. Ebong, D. S. Kim, A. Rohatgi, and W. Zhang, Proc. 33rd IEEE Photovoltaic Specialists Conf. (San Diego, 2008) p. 1.