• Title/Summary/Keyword: Scrap recycling

Search Result 208, Processing Time 0.02 seconds

Current Status on the Pyrometallurgical Process for Recovering Precious and Valuable Metals from Waste Electrical and Electronic Equipment(WEEE) Scrap (폐전기전자기기(廢電氣電子機器) 스크랩으로부터 귀금속(貴金屬) 및 유가금속(有價金屬) 회수(回收)를 위한 건식공정(乾式工程) 기술(技術) 현황(現況))

  • Kim, Byung-Su;Lee, Jae-Chun;Jeong, Jin-Ki
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.14-23
    • /
    • 2009
  • In terms of resources recycling and resolving waste disposal problems, it is very important to recover precious metals like Au, Ag and Pd and valuable metals like Cu, Sn and Ni from the scraps of waste electrical and electronic equipment(WEEE) that consists of detective electrical and electronic parts discarded during manufacturing electrical and electronic equipments and waste electrical and electronic parts generated during disassembling them. In general, the scraps of WEEE are composed of various metals and alloys as well as refractory oxides and plastic components. Precious and valuable metals from the scraps of WEEE can be recovered by gas-phase-volatilization, hydrometallurgical, or pyrometallurgical processes. However, the gas-phase-volatilization and hydrometallurgical processes have been suggested but not yet commercialized. At the present time, most of the commercial plants for recovering precious and valuable metals from the scraps of WEEE adopt pyrometallurgical processes. Therefore, in this paper, the technical and environmental aspects on the important pyrometallurgical processes through literature survey are reviewed, and the scale-up result of a new pyrometallurgical process for recovering the precious and valuable metals contained in the scraps of WEEE using waste copper slag is presented.

Cobalt Recovery by Oxalic Acid and Hydroxide Precipitation from Waste Cemented Carbide Scrap Cobalt Leaching Solution (폐초경 스크랩 코발트 침출용액으로부터 옥살산 및 수산화물 침전에 의한 코발트 분말 회수)

  • Lee, Jaesung;Kim, Mingoo;Kim, Seulgi;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.497-501
    • /
    • 2021
  • Cobalt (Co) is mainly used to prepare cathode materials for lithium-ion batteries (LIBs) and binder metals for WC-Co hard metals. Developing an effective method for recovering Co from WC-Co waste sludge is of immense significance. In this study, Co is extracted from waste cemented carbide soft scrap via mechanochemical milling. The leaching ratio of Co reaches approximately 93%, and the leached solution, from which impurities except nickel are removed by pH titration, exhibits a purity of approximately 97%. The titrated aqueous Co salts are precipitated using oxalic acid and hydroxide precipitation, and the effects of the precipitating agent (oxalic acid and hydroxide) on the cobalt microstructure are investigated. It is confirmed that the type of Co compound and the crystal growth direction change according to the precipitation method, both of which affect the microstructure of the cobalt powders. This novel mechanochemical process is of significant importance for the recovery of Co from waste WC-Co hard metal. The recycled Co can be applied as a cemented carbide binder or a cathode material for lithium secondary batteries.

The Grinding Characteristics of the Metal Components in Printed Circuit Boards(PCBs) Scrap by the Swing-Hammer Type Impact Mill (충격형 분쇄기 에 의한 폐프린트배선기판(PCBs) 중 금속성분의 분쇄 특성)

  • 이재천;길대섭;남철우;최철준
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.28-35
    • /
    • 2002
  • A study on the grinding characteristics of metal components in printed circuit boards (PCBs) scrap by a swing-hammer typeimpact mill was conducted. The PCBs scrap crushed to sizes less than 3 mm were pulverized to liberate metal components by the impact mill. The effect of rotation speed of hammer on the grinding characteristics was investigated. The particle size distribution and degree of liberation of metals such as copper and solder were measured. The effect of rotation speed and particle size on the shape sorting of metal Particles from milled PCBs was investigated using an inclined vibrating Plate. At the hammer speed of 61.3 m/s about 80% of the copper particles became larger than 297 $\mu$m while 90% of solder particles was smaller than 297 $\mu$m. In the shape sorting method, the recovery location becomes shorter as the rotation speed of hammer increases. The recovery location for particles larger than 297$\mu$m was shorter than for particles sized between 149$\mu$m and 297$\mu$m. As the recovery location becomes shorter, KI value increases towards unity while $\phi_{c}$ value decreases towards unity indicating the more roundness of metal particles.

A Study of the Research Trends and the Material flow on the Unrecycled Materials in Korea - The Current Situation of Recycling Technology for Waste Resources in Korea(2) - (국내(國內) 미이용자원(未利用資源)을 위한 회수(回收) 연구동향(硏究動向) 및 물질(物質)흐름 - 국내자원(國內資源)의 유효이용(有效利用)을 위한 처리(處理) 및 회수기술(回收技術) 동향조사(動向調査)(2) -)

  • Oh, Jae-Hyun;Kim, Mi-Sung;Shin, Hee-Duck;Min, Ji-Won
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.63-76
    • /
    • 2007
  • Typical examples as unrecycled materials in Korea were Zinc from the electric arc furnace dust (EAF Dust), and Moiybdenium and Vanadium from the desulfurizing spent catalyst of petrochemical industries. In the otherwise, though recovery of valuable metals from the waste electronic scrap such as printed circuit boards (PCBs) and platinum group metals (PGM) from the waste automobile catalyst have been interesting issues, it is difficult to collect the exact informations or statistics on their material flow system. In this article, The current domestic research trends for unrecycled or less recycled materials have been reviewed, and material flow and recycling technologies on the desulfurizing spent catalyst were surveyed.

Recycling of Ti Turning Scraps for Production of Consumable Arc Electrode (아크용(用) 소모성(消耗性) 전극(電極) 제조(製造)를 위한 타이타늄 선삭(旋削) 스크랩의 재활용(再活用))

  • Oh, Jung-Min;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.58-64
    • /
    • 2012
  • Ti button type ingots were prepared by recycling of Ti turning scraps using vacuum arc melting process for production of consumable arc electrode. The behavior of impurities such as Fe, W, O, and N in the Ti button ingots was investigated and the properties of the Ti button ingots were also evaluated. In the case of oxygen gaseous impurity, the oxygen layers on the surface of the Ti turning scraps were easily removed by the first vacuum arc melting. On the other hand, the solute oxygen in the Ti turning scraps was not removed by the next melting. In the case of Fe, major impurity in the Ti turning scraps, the removal degree in the final Ti button ingot refined by vacuum arc melting for 20 minutes was approximately 43 %, which is due to the vapor pressure difference between Ti and Fe. As a result, the Ti button ingots with ASTM grade 3 could be obtained by multiple vacuum arc melting from the Ti turning scraps. Therefore, it was confirmed that the preparation of consumable electrode for vacuum arc remelting could be possible by recycling of Ti turning scraps.

Test Run of Pilot Plant for Recycling of the Leached Residue in the Processing of Waste Aluminum Dross (알루미늄 폐드로스 침출잔사 처리 파일롯트 플랜트 시운전 결과)

  • 박형규;이후인
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.50-57
    • /
    • 2004
  • Waste aluminum dross is a major waste in the aluminum scrap smelters and its components are mostly alumina and remained metallic aluminum. In the process to extract the remained aluminum from the waste dross by leaching with sodium hydroxide solution, residue is generated and its main component is alumina. This residue could be recycled into ceramic materials such as alumina castable refractories by going through a series of treatments such as washing, drying and roasting. In this study, a pilot plant was constructed and tested to demonstrate the developed technology. One thousand tons of waste aluminum dross could be processed, and about seven hundred tons of ceramic materials produced in the demonstration line. From the test run of the pilot plant, although it was confirmed that the developed technology could be applied to commercialization, several technical improvements were found to be necessary for reducing impurities such as Na, Fe and for reforming drying equipment.

A Study on Recovery of Rare Earth and Acid Leaching for Wet Recycling of Waste NiMH Batteries (니켈수소 폐이차전지의 습식 재활용을 위한 산침출 및 희토류 회수에 대한 연구)

  • Ahn, Nak-Kyoon;Kim, Dae-Weon;Yang, Dae-Hoon
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.22-30
    • /
    • 2018
  • In order to industrially recycle nickel, cobalt and rare earth elements included in waste NiMH batteries, electrode powder scraps were recovered by dismantle, crushing and classification from automobile waste battery module. As a result of leaching recovered electrode powder scrap with sulfuric acid solution, 99% of nickel, cobalt and rare earth elements were leached under reaction conditions of 1.0 M sulfuric acid solution, pulp density 25 g/L and reaction temperature $90^{\circ}C$ for 4 hours. In addition, the rare earth elements were able to separate from nickel / cobalt solution as cerium, lanthanum and neodymium precipitated under pH 2.0 using 10 M NaOH.

Test Run of the Pilot Plant for Recycling of the Waste Aluminum Dross (알루미늄 페드로스 재활용 파일롯트플랜트 시운전 결과)

  • Park, Hyung-Kyu;Lee, Hoo-In;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.41-46
    • /
    • 2005
  • Waste aluminum dross is a major waste in the aluminum scrap smelters and its major components are alumina and metallic aluminum. In this study, waste aluminum dross was leached with sodium hydroxide solution to extract the remained aluminum into the solution, and aluminum hydroxide was recovered from the leached solution. The dross residue generated at the leaching step was recycled into alumina base ceramic materials through a series of treatments such as washing, drying and roasting. Also, a pilot plant was constructed and tested to demonstrate the developed technology. Four tons of waste aluminum dross could be processed per day. From the test run of the pilot plant, it was confirmed that the developed technology could be applied to commercialization.

New Practical and Eco-friendly Recycling method of FRP Boats (FRP선박의 재처리시스템과 활용성 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.181-186
    • /
    • 2007
  • Despite of environmental problems(safety hazards), mechanical recycling of FRP boats, which involves shredding and grinding of the scrap FRP in a new product. is one of the simpler and more technically proven methods than incineration or reclamation ones. Because FRP is made up of reinforced fiber glass, it is very difficult to break into pieces. It also occurs secondary problem such as air pollution and unacceptable shredding noise level. The another urgent problem which is a serious barrier to FRP recycling is very limited reusable applications. This study is to propose a new method which is efficient and environment friendly waste FRP regenerating system. And it also have shown the polymer cement and fiber-reinforced concrete applications with the waste FRP.

  • PDF

Developing a General Recycling Method of FRP Boats (FRP선박의 범용 재활용을 위한 재처리시스템의 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • For several decades, many researchers have been involved in developing recycling methods for FRP boats. There are four basic classes of recycling covered in the literature. Despite of environmental problems(safety hazards), mechanical recycling of FRP boats, which involves shredding and grinding of the scrap FRP, is one of the simpler and more technically proven methods than incineration, reclamation or chemical ones. Because FRP is made up of reinforced fiber glass, it is very difficult to break into pieces. It also leads to secondary problem in recycling process, such as air pollution and unacceptable shredding noise level. Another serious problem of mechanical FRP recycling is very limited reusable applications for the residue. This study is to propose a new and efficient method which is more wide range applications and environment friendly waste FRP regenerating system. New system is added with the cyclone sorting machine for airborne pollutions and modified cutting system for several glass fiber chips sizes. It also has shown the FRP chip fiber-reinforced concrete and fiber-reinforced secondary concrete applications with the waste FRP boat to be more eligible than existing recycling method.

  • PDF