• Title/Summary/Keyword: Scientific Information Service Platform

Search Result 17, Processing Time 0.026 seconds

Tax Refund Service and e-Coupon Promotion: Designing a Tourism Marketing Platform (세금 환급 서비스와 전자 쿠폰 프로모션: 관광 마케팅 플랫폼의 설계)

  • Kim, Taekyung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.6
    • /
    • pp.91-101
    • /
    • 2019
  • Tourism or travel business consists of a set of services for people who visit exotic places. Payment is usually marking the end of the series of activities relating to tourism, and it becomes the linkage for the next activity. With the recent advancement of mobile Fintech technologies, we have learned that more convenient and more secure financial transactions are improving the quality of tourism. It should be noted that tourism counts on information technology heavily in terms of mobile Internet and smart devices use, which yields to a wide business opportunities for Fintech startups. However, payment information has not been highlighted for additional marketing promotion activities. The lack of research into information technology-based business models that extend Fintech services related to payment in venture start-up studies hinders the understanding of the possibility of creating new business through the value creation process after payment. This study attempts to investigate this issue based on the theory of smart tourism and service-dominant logic with developing a new information system. More specifically, marketing promotion activities after payment for Chinese tourists visiting Korea are examined. Specifically, WeChat Pay and instant tax refund service were considered while the system was developed by following desing science research methodology. This study is meaningful in that it finds a new possibility of Fintech business model by applying scientific and academic methods, and it reminds the necessity of service automation system centered on instant tax refund.

"Where can I buy this?" - Fashion Item Searcher using Instance Segmentation with Mask R-CNN ("이거 어디서 사?" - Mask R-CNN 기반 객체 분할을 활용한 패션 아이템 검색 시스템)

  • Jung, Kyunghee;Choi, Ha nl;Sammy, Y.X.B.;Kim, Hyunsung;Toan, N.D.;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.465-467
    • /
    • 2022
  • Mobile phones have become an essential item nowadays since it provides access to online platform and service fast and easy. Coming to these platforms such as Social Network Service (SNS) for shopping have been a go-to option for many people. However, searching for a specific fashion item in the picture is challenging, where users need to try multiple searches by combining appropriate search keywords. To tackle this problem, we propose a system that could provide immediate access to websites related to fashion items. In the framework, we also propose a deep learning model for an automatic analysis of image contexts using instance segmentation. We use transfer learning by utilizing Deep fashion 2 to maximize our model accuracy. After segmenting all the fashion item objects in the image, the related search information is retrieved when the object is clicked. Furthermore, we successfully deploy our system so that it could be assessable using any web browser. We prove that deep learning could be a promising tool not only for scientific purpose but also applicable to commercial shopping.

Container-based Cluster Management System for User-driven Distributed Computing (사용자 맞춤형 분산 컴퓨팅을 위한 컨테이너 기반 클러스터 관리 시스템)

  • Park, Ju-Won;Hahm, Jaegyoon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.9
    • /
    • pp.587-595
    • /
    • 2015
  • Several fields of science have traditionally demanded large-scale workflow support, which requires thousands of central processing unit (CPU) cores. In order to support such large-scale scientific workflows, large-capacity cluster systems such as supercomputers are widely used. However, as users require a diversity of software packages and configurations, a system administrator has some trouble in making a service environment in real time. In this paper, we present a container-based cluster management platform and introduce an implementation case to minimize performance reduction and dynamically provide a distributed computing environment desired by users. This paper offers the following contributions. First, a container-based virtualization technology is assimilated with a resource and job management system to expand applicability to support large-scale scientific workflows. Second, an implementation case in which docker and HTCondor are interlocked is introduced. Lastly, docker and native performance comparison results using two widely known benchmark tools and Monte-Carlo simulation implemented using various programming languages are presented.

Artificial Intelligence Technology Trends and IBM Watson References in the Medical Field (인공지능 왓슨 기술과 보건의료의 적용)

  • Lee, Kang Yoon;Kim, Junhewk
    • Korean Medical Education Review
    • /
    • v.18 no.2
    • /
    • pp.51-57
    • /
    • 2016
  • This literature review explores artificial intelligence (AI) technology trends and IBM Watson health and medical references. This study explains how healthcare will be changed by the evolution of AI technology, and also summarizes key technologies in AI, specifically the technology of IBM Watson. We look at this issue from the perspective of 'information overload,' in that medical literature doubles every three years, with approximately 700,000 new scientific articles being published every year, in addition to the explosion of patient data. Estimates are also forecasting a shortage of oncologists, with the demand expected to grow by 42%. Due to this projected shortage, physicians won't likely be able to explore the best treatment options for patients in clinical trials. This issue can be addressed by the AI Watson motivation to solve healthcare industry issues. In addition, the Watson Oncology solution is reviewed from the end user interface point of view. This study also investigates global company platform business to explain how AI and machine learning technology are expanding in the market with use cases. It emphasizes ecosystem partner business models that can support startup and venture businesses including healthcare models. Finally, we identify a need for healthcare company partnerships to be reviewed from the aspect of solution transformation. AI and Watson will change a lot in the healthcare business. This study addresses what we need to prepare for AI, Cognitive Era those are understanding of AI innovation, Cloud Platform business, the importance of data sets, and needs for further enhancement in our knowledge base.

Development of 3D Mapping System for Web Visualization of Geo-spatial Information Collected from Disaster Field Investigation (재난현장조사 공간정보 웹 가시화를 위한 3차원 맵핑시스템 개발)

  • Kim, Seongsam;Nho, Hyunju;Shin, Dongyoon;Lee, Junwoo;Kim, Hyunju
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1195-1207
    • /
    • 2020
  • With the development of GeoWeb technology, 2D/3D spatial information services through the web are also has been used increasingly in the application of disaster management. This paper is suggested to construct a web-based 3D geo-spatial information mapping platform to visualize various spatial information collected at the disaster site in a web environment. This paper is presented a web-based geo-spatial information mapping service plan for the various types of 2D/3D spatial data and large-volume LiDAR point cloud data collected at the disaster accident site using HTML5/WebGL, web development standard technology and open source. Firstly, the collected disaster site survey 2D data is constructed as a spatial DB using GeoServer's WMS service and PostGIS provided an open source and rendered in a web environment. Secondly, in order to efficiently render large-capacity 3D point cloud data in a web environment, a Potree algorithm is applied to simplifies point cloud data into 2D tiles using a multi-resolution octree structure. Lastly, OpenLayers3 based 3D web mapping pilot system is developed for web visualization of 2D/3D spatial information by implementing basic and application functions for controlling and measuring 3D maps with Graphic User Interface (GUI). For the further research, it is expected that various 2D survey data and various spatial image information of a disaster site can be used for scientific investigation and analysis of disaster accidents by overlaying and visualizing them on a built web-based 3D geo-spatial information system.

A Framework of Intelligent Middleware for DNA Sequence Analysis in Cloud Computing Environment (DNA 서열 분석을 위한 클라우드 컴퓨팅 기반 지능형 미들웨어 설계)

  • Oh, Junseok;Lee, Yoonjae;Lee, Bong Gyou
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.29-43
    • /
    • 2014
  • The development of NGS technologies, such as scientific workflows, has reduced the time required for decoding DNA sequences. Although the automated technologies change the genome sequence analysis environment, limited computing resources still pose problems for the analysis. Most scientific workflow systems are pre-built platforms and are highly complex because a lot of the functions are implemented into one system platform. It is also difficult to apply components of pre-built systems to a new system in the cloud environment. Cloud computing technologies can be applied to the systems to reduce analysis time and enable simultaneous analysis of massive DNA sequence data. Web service techniques are also introduced for improving the interoperability between DNA sequence analysis systems. The workflow-based middleware, which supports Web services, DBMS, and cloud computing, is proposed in this paper for expecting to reduceanalysis time and aiding lightweight virtual instances. It uses DBMS for managing the pipeline status and supporting the creation of lightweight virtual instances in the cloud environment. Also, the RESTful Web services with simple URI and XML contents are applied for improving the interoperability. The performance test of the system needs to be conducted by comparing results other developed DNA analysis services at the stabilization stage.

The Classification System and Information Service for Establishing a National Collaborative R&D Strategy in Infectious Diseases: Focusing on the Classification Model for Overseas Coronavirus R&D Projects (국가 감염병 공동R&D전략 수립을 위한 분류체계 및 정보서비스에 대한 연구: 해외 코로나바이러스 R&D과제의 분류모델을 중심으로)

  • Lee, Doyeon;Lee, Jae-Seong;Jun, Seung-pyo;Kim, Keun-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.127-147
    • /
    • 2020
  • The world is suffering from numerous human and economic losses due to the novel coronavirus infection (COVID-19). The Korean government established a strategy to overcome the national infectious disease crisis through research and development. It is difficult to find distinctive features and changes in a specific R&D field when using the existing technical classification or science and technology standard classification. Recently, a few studies have been conducted to establish a classification system to provide information about the investment research areas of infectious diseases in Korea through a comparative analysis of Korea government-funded research projects. However, these studies did not provide the necessary information for establishing cooperative research strategies among countries in the infectious diseases, which is required as an execution plan to achieve the goals of national health security and fostering new growth industries. Therefore, it is inevitable to study information services based on the classification system and classification model for establishing a national collaborative R&D strategy. Seven classification - Diagnosis_biomarker, Drug_discovery, Epidemiology, Evaluation_validation, Mechanism_signaling pathway, Prediction, and Vaccine_therapeutic antibody - systems were derived through reviewing infectious diseases-related national-funded research projects of South Korea. A classification system model was trained by combining Scopus data with a bidirectional RNN model. The classification performance of the final model secured robustness with an accuracy of over 90%. In order to conduct the empirical study, an infectious disease classification system was applied to the coronavirus-related research and development projects of major countries such as the STAR Metrics (National Institutes of Health) and NSF (National Science Foundation) of the United States(US), the CORDIS (Community Research & Development Information Service)of the European Union(EU), and the KAKEN (Database of Grants-in-Aid for Scientific Research) of Japan. It can be seen that the research and development trends of infectious diseases (coronavirus) in major countries are mostly concentrated in the prediction that deals with predicting success for clinical trials at the new drug development stage or predicting toxicity that causes side effects. The intriguing result is that for all of these nations, the portion of national investment in the vaccine_therapeutic antibody, which is recognized as an area of research and development aimed at the development of vaccines and treatments, was also very small (5.1%). It indirectly explained the reason of the poor development of vaccines and treatments. Based on the result of examining the investment status of coronavirus-related research projects through comparative analysis by country, it was found that the US and Japan are relatively evenly investing in all infectious diseases-related research areas, while Europe has relatively large investments in specific research areas such as diagnosis_biomarker. Moreover, the information on major coronavirus-related research organizations in major countries was provided by the classification system, thereby allowing establishing an international collaborative R&D projects.