• Title/Summary/Keyword: Science Learning

Search Result 9,797, Processing Time 0.046 seconds

AI-Based Object Recognition Research for Augmented Reality Character Implementation (증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구)

  • Seok-Hwan Lee;Jung-Keum Lee;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1321-1330
    • /
    • 2023
  • This study attempts to address the problem of 3D pose estimation for multiple human objects through a single image generated during the character development process that can be used in augmented reality. In the existing top-down method, all objects in the image are first detected, and then each is reconstructed independently. The problem is that inconsistent results may occur due to overlap or depth order mismatch between the reconstructed objects. The goal of this study is to solve these problems and develop a single network that provides consistent 3D reconstruction of all humans in a scene. Integrating a human body model based on the SMPL parametric system into a top-down framework became an important choice. Through this, two types of collision loss based on distance field and loss that considers depth order were introduced. The first loss prevents overlap between reconstructed people, and the second loss adjusts the depth ordering of people to render occlusion inference and annotated instance segmentation consistently. This method allows depth information to be provided to the network without explicit 3D annotation of the image. Experimental results show that this study's methodology performs better than existing methods on standard 3D pose benchmarks, and the proposed losses enable more consistent reconstruction from natural images.

Mapping Mammalian Species Richness Using a Machine Learning Algorithm (머신러닝 알고리즘을 이용한 포유류 종 풍부도 매핑 구축 연구)

  • Zhiying Jin;Dongkun Lee;Eunsub Kim;Jiyoung Choi;Yoonho Jeon
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • Biodiversity holds significant importance within the framework of environmental impact assessment, being utilized in site selection for development, understanding the surrounding environment, and assessing the impact on species due to disturbances. The field of environmental impact assessment has seen substantial research exploring new technologies and models to evaluate and predict biodiversity more accurately. While current assessments rely on data from fieldwork and literature surveys to gauge species richness indices, limitations in spatial and temporal coverage underscore the need for high-resolution biodiversity assessments through species richness mapping. In this study, leveraging data from the 4th National Ecosystem Survey and environmental variables, we developed a species distribution model using Random Forest. This model yielded mapping results of 24 mammalian species' distribution, utilizing the species richness index to generate a 100-meter resolution map of species richness. The research findings exhibited a notably high predictive accuracy, with the species distribution model demonstrating an average AUC value of 0.82. In addition, the comparison with National Ecosystem Survey data reveals that the species richness distribution in the high-resolution species richness mapping results conforms to a normal distribution. Hence, it stands as highly reliable foundational data for environmental impact assessment. Such research and analytical outcomes could serve as pivotal new reference materials for future urban development projects, offering insights for biodiversity assessment and habitat preservation endeavors.

Evaluation of Usefulness of Assertive Devices to Improve the Accuracy in Skull lateral X-ray Projection (두개골 측방향 X-선 촬영에서 정확도 향상을 위한 촬영 보조 기구의 유용성 평가)

  • Bo-Seok Chang
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2024
  • In X-ray projection, Unskilled radiologists become skilled through fail exam. This causes the patient to be exposed to unnecessary radiation. In this study, pre-position unskilled radiologic technologist presented ways to improve clinical proficiency. presented a skull lateral x-ray projection practice method using visual, spatial, and assistive devices. In addition, the accuracy and usefulness of the use of assistive devices were evaluated. When X-ray images were taken based on learning, the rotational spacing, which indicates image distortion, was 7.85 ± 1.45 mm and the tiliting spacing was 4.84 ± 0.5 mm. When practicing using visual aids, the rotational spacing is 4.4 ± 0.76 mm and the inclination spacing is 3.01 ± 0.87 mm. using a spatial compensation device, the rotational spacing is 5.2 ± 0.69 mm and the tiliting spacing is 3.33 ± 0.61 mm. Skull lateral X-ray Image distortion caused by empirical photography practice decreased by 5.4%, but image distortion caused by tilting increased by 1.2%. When practicing using a visual assistive devices, the degree of rotational spacing by 40.1% and the tiliting spacing decreased by 30.7% compared to the empirical x-ray exposure practice. When using spatial assistive devices, the rotation interval was reduced by 41.7% and the tilting interval by 23.7% compared to conventional empirical x-ray exposure practice. Therefore, if an unskilled radiologist practices using visual and spatial aids,the accuracy will be improved in skull lateral x-ray projection.

A Study on Biometric Model for Information Security (정보보안을 위한 생체 인식 모델에 관한 연구)

  • Jun-Yeong Kim;Se-Hoon Jung;Chun-Bo Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.317-326
    • /
    • 2024
  • Biometric recognition is a technology that determines whether a person is identified by extracting information on a person's biometric and behavioral characteristics with a specific device. Cyber threats such as forgery, duplication, and hacking of biometric characteristics are increasing in the field of biometrics. In response, the security system is strengthened and complex, and it is becoming difficult for individuals to use. To this end, multiple biometric models are being studied. Existing studies have suggested feature fusion methods, but comparisons between feature fusion methods are insufficient. Therefore, in this paper, we compared and evaluated the fusion method of multiple biometric models using fingerprint, face, and iris images. VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, and Inception-v3 were used for feature extraction, and the fusion methods of 'Sensor-Level', 'Feature-Level', 'Score-Level', and 'Rank-Level' were compared and evaluated for feature fusion. As a result of the comparative evaluation, the EfficientNet-B7 model showed 98.51% accuracy and high stability in the 'Feature-Level' fusion method. However, because the EfficietnNet-B7 model is large in size, model lightweight studies are needed for biocharacteristic fusion.

Survey of the Knowledge of Korean Radiology Residents on Medical Artificial Intelligence (의료 인공지능에 대한 대한민국 영상의학과 전공의의 인식 조사 연구)

  • Hyeonbin Lee;Seong Ho Park;Cherry Kim;Seungkwan Kim;Jaehyung Cha
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1397-1411
    • /
    • 2020
  • Purpose To survey the perception, knowledge, wishes, and expectations of Korean radiology residents regarding artificial intelligence (AI) in radiology. Materials and Methods From June 4th to 7th, 2019, questionnaires comprising 19 questions related to AI were distributed to 113 radiology residents. Results were analyzed based on factors such as the year of residency and location and number of beds of the hospital. Results A total of 101 (89.4%) residents filled out the questionnaire. Fifty (49.5%) respondents had studied AI harder than the average while 68 (67.3%) had a similar or higher understanding of AI than the average. In addition, the self-evaluation and knowledge level of AI were significantly higher for radiology residents at hospitals located in Seoul and Gyeonggi-do compared to radiology residents at hospitals located in other regions. Furthermore, the self-evaluation and knowledge level of AI were significantly lower in junior residents than in residents in the 4th year of training. Of the 101 respondents, only 16 (15.8%) had experiences in AI-related study while 91 (90%) were willing to participate in AI-related study in the future. Conclusion Organizational efforts through a radiology society would be needed to meet the need of radiology trainees for AI education and to promote the role of radiologists more adequately in the era of medical AI.

Analysis of Finnish Education-related Research Trends in Korean Journals : A Network Text Analysis (핀란드 교육 관련 연구 동향분석 : 네트워크 텍스트 분석을 중심으로)

  • Kim YoungHwan;Kim YoungMin;Kim Hyunsoo;Noh Jihwa;Murphy Odo Dennis;Park Changun;Kim EunJi;Bae JinHee;Shon Mi;Chung JuHun;Lee ChaeYoung
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.4 no.1
    • /
    • pp.85-111
    • /
    • 2024
  • Since the release of the 2000 PISA results, Finland's education has consistently been regarded as a competitor or benchmark for South Korea's educational system. However, recent indicators of division, opposition, and discontent within our educational sphere suggest a considerable departure from Finland's ethos of happiness in education. Against this backdrop, this study aims to analyze the trends in Finnish education-related research appearing in Korean academic journals. Utilizing network text analysis, we examined 160 papers indexed in RISS with titles containing "Finland" and "education". Key findings are as follows. Firstly, research on Finnish education has been steadily increasing, albeit showing recent signs of decline. Secondly, the majority of research topics were micro-level, with literature review-based methodologies predominating. Thirdly, a minority of researchers accounted for one-third of the total research output. Fourthly, countries compared with Finland predominantly included neoliberal states such as Japan, the United States, the United Kingdom, Australia, and Singapore. Fifthly, research themes and subjects primarily focused on primary and secondary education, particularly in domains such as mathematics and science, influenced by PISA. Future research on Finnish education should transcend localized and fragmented areas of inquiry, undertaking comprehensive investigations into the processes and history of Finland's happiness-oriented education. Such endeavors are essential for deriving insights crucial for our learning. Particularly, consideration should be given to moving beyond literature-based methodologies, fostering international collaborative discussions facilitated online, and linking the Finnish education community with educators, parents, students, local councils, and governmental stakeholders to collectively discuss and research.

Predicting Relationship Between Instagram Use and Psychological Variables During COVID-19 Quarantine Using Multivariate Techniques (다변량 분석 방법을 이용한 인스타그램 이용과 심리적 변인 간의 관계 예측: COVID-19로 인한 자가격리자를 중심으로)

  • Chaery Park;Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.3-14
    • /
    • 2023
  • Recently, the effect of using social media on psychological well-being has been highlighted. However, studies exploring factors that may predict the quality of social media relationships are relatively rare. The present study investigated whether social media activity and psychological states, such as loneliness and depression, can predict the quality of social media relationships during the COVID-19 quarantine period using a machine learning technique. Ninety-five participants completed a self-report survey on loneliness, Instagram activity, quality of social media relationships, and depression at different time points (during the self-isolation and after the release of self-isolation). Similarity analyses, including multidimensional scaling (MDS), representational similarity analysis (RSA), and classification analyses, were conducted separately at each point in time. The results of MDS revealed that time spent on social media and depression were distinguished from others in the first dimension, and loneliness and passive use were distinguished from others in the second dimension. We divided the data into two groups based on the quality of social media relationships (high and low), and we conducted RSA on each group. Findings indicated an interaction between the quality of the social media relationships and the situation. Specifically, the effect of self-isolation on the high-quality social media relationship group is more pronounced than that on the low-quality group. The classification results also revealed that the predictors of social media relationships depend on whether or not they are isolated. Overall, the results of this study imply that social media relationship could be well predicted when people are not in isolated situations.

A Study on the Prediction Models of Used Car Prices Using Ensemble Model And SHAP Value: Focus on Feature of the Vehicle Type (앙상블 모델과 SHAP Value를 활용한 국내 중고차 가격 예측 모델에 관한 연구: 차종 특성을 중심으로)

  • Seungjun Yim;Joungho Lee;Choonho Ryu
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.27-43
    • /
    • 2024
  • The market share of online platform services in the used car market continues to expand. And The used car online platform service provides service users with specifications of vehicles, accident history, inspection details, detailed options, and prices of used cars. SUV vehicle type's share in the domestic automobile market will be more than 50% in 2023, Sales of Hybrid vehicle type are doubled compared to last year. And these vehicle types are also gaining popularity in the used car market. Prior research has proposed a used car price prediction model by executing a Machine Learning model for all vehicles or vehicles by brand. On the other hand, the popularity of SUV and Hybrid vehicles in the domestic market continues to rise, but It was difficult to find a study that proposed a used car price prediction model for these vehicle type. This study selects a used car price prediction model by vehicle type using vehicle specifications and options for Sedans, SUV, and Hybrid vehicles produced by domestic brands. Accordingly, after selecting feature through the Lasso regression model, which is a feature selection, the ensemble model was sequentially executed with the same sampling, and the best model by vehicle type was selected. As a result, the best model for all models was selected as the CBR model, and the contribution and direction of the features were confirmed by visualizing Tree SHAP Value for the best model for each model. The implications of this study are expected to propose a used car price prediction model by vehicle type to sales officials using online platform services, confirm the attribution and direction of features, and help solve problems caused by asymmetry fo information between them.

Development of a Prediction Model for Personal Thermal Sensation on Logistic Regression Considering Urban Spatial Factors (도시공간적 요인을 고려한 로지스틱 회귀분석 기반 체감더위 예측 모형 개발)

  • Uk-Je SUNG;Hyeong-Min PARK;Jae-Yeon LIM;Yu-Jin SEO;Jeong-Min SON;Jin-Kyu MIN;Jeong-Hee EUM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.81-98
    • /
    • 2024
  • This study analyzed the impact of urban spatial factors on the thermal environment. The personal thermal sensation was set as the unit of thermal environment to analyze its correlation with environmental factors. To collect data on personal thermal sensation, Living Lab was applied, allowing citizens to record their thermal sensation and measure the temperature. Based on the input points of the collected personal thermal sensation, nearby urban spatial elements were collected to build a dataset for statistical analysis. Logistic regression analysis was conducted to analyze the impact of each factor on personal thermal sensation. The analysis results indicate that the temperature is influenced by the surrounding spatial environment, showing a negative correlation with building height, greenery rate, and road rate, and a positive correlation with sky view factor. Furthermore, the road rate, sky view factor, and greenery rate, in that order, had a strong impact on perceived heat. The results of this study are expected to be utilized as basic data for assessing the thermal environment to prepare local thermal environment measures in response to climate change.

The Effect of University Service Quality on Behavior Intention on University Enrollment (대학 서비스품질이 대학 재학에 관한 행동의도에 미치는 영향)

  • Kim, Hyojin;An, Myounga
    • Journal of Service Research and Studies
    • /
    • v.14 no.3
    • /
    • pp.153-171
    • /
    • 2024
  • Recently, domestic universities have become more competitive among universities due to the Fourth Industrial Revolution and the rapid decline of population. As a result, universities are making great efforts to improve university service quality to enhance university competitiveness as they change from supplier-centered thinking to consumer-centered thinking. Despite the increasing importance of university service quality, research on service quality is mainly focused on companies, and research on service quality in the university education environment is insufficient. Therefore, this study aims to examine the influence relationship between university service quality, trust, reputation, and behavior intention. The results of this study are as follows. First, among the service quality of university, tangibility, assurance, and empathy were found to have a positive (+) effect on the trust of the university, but reliability was found to have no significant effect on the trust of the university. Second, among the service quality of university, tangibility, reliability, and empathy were found to have a positive (+) effect on the reputation of the university, but assurance was found to have no significant effect on the reputation of the university. Third, it was found that the trust of the university had a positive (+) effect on the behavior intention. Fourth, it was found that the university's reputation had a positive (+) effect on the behavior intention. Through the above research results, this study aims to derive an effective management plan for university service quality and to present a plan for establishing a differentiated operating strategy for universities that can respond to students' learning needs and changes in the times in the rapidly changing university education environment.