• Title/Summary/Keyword: Schur-Complement matrices

Search Result 13, Processing Time 0.025 seconds

A CLASS OF MULTILEVEL RECURSIVE INCOMPLETE LU PRECONDITIONING TECHNIQUES

  • Zhang, Jun
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.305-326
    • /
    • 2001
  • We introduce a class of multilevel recursive incomplete LU preconditioning techniques (RILUM) for solving general sparse matrices. This techniques is based on a recursive two by two block incomplete LU factorization on the coefficient martix. The coarse level system is constructed as an (approximate) Schur complement. A dynamic preconditioner is obtained by solving the Schur complement matrix approximately. The novelty of the proposed techniques is to solve the Schur complement matrix by a preconditioned Krylov subspace method. Such a reduction process is repeated to yield a multilevel recursive preconditioner.

SEVERAL NEW PRACTICAL CRITERIA FOR NONSINGULAR H-MATRICES

  • Mo, Hongmin
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.987-992
    • /
    • 2010
  • H-matrix is a special class of matrices with wide applications in engineering and scientific computation, how to judge if a given matrix is an H-matrix is very important, especially for large scale matrices. In this paper, we obtain several new practical criteria for judging nonsingular H-matrices by using the partitioning technique and Schur complement of matrices. Their effectiveness is illustrated by numerical examples.

THE DRAZIN INVERSES OF THE SUM OF TWO MATRICES AND BLOCK MATRIX

  • Shakoor, Abdul;Yang, Hu;Ali, Ilyas
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.343-352
    • /
    • 2013
  • In this paper, we give a formula of $(P+Q)^D$ under the conditions $P^2Q+QPQ=0$ and $P^3Q=0$. Then applying it to give some results of block matrix $M=(^A_C^B_D)$ (A and D are square matrices) with generalized Schur complement is zero under some conditions. Finally, numerical examples are given to illustrate our results.

FORWARD ORDER LAW FOR THE GENERALIZED INVERSES OF MULTIPLE MATRIX PRODUCT

  • Xiong, Zhipin;Zheng, Bing
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.415-424
    • /
    • 2007
  • The generalized inverses have many important applications in the aspects of theoretic research and numerical computations and therefore they were studied by many authors. In this paper we get some necessary and sufficient conditions of the forward order law for {1}-inverse of multiple matrices products $A\;=\;A_1A_2{\cdots}A_n$ by using the maximal rank of generalized Schur complement.

RECURSIVE TWO-LEVEL ILU PRECONDITIONER FOR NONSYMMETRIC M-MATRICES

  • Guessous, N.;Souhar, O.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.19-35
    • /
    • 2004
  • We develop in this paper some preconditioners for sparse non-symmetric M-matrices, which combine a recursive two-level block I LU factorization with multigrid method, we compare these preconditioners on matrices arising from discretized convection-diffusion equations using up-wind finite difference schemes and multigrid orderings, some comparison theorems and experiment results are demonstrated.

EXTENSION OF BLOCK MATRIX REPRESENTATION OF THE GEOMETRIC MEAN

  • Choi, Hana;Choi, Hayoung;Kim, Sejong;Lee, Hosoo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.641-653
    • /
    • 2020
  • To extend the well-known extremal characterization of the geometric mean of two n × n positive definite matrices A and B, we solve the following problem: $${\max}\{X:X=X^*,\;\(\array{A&V&X\\V&B&W\\X&W&C}\){\geq}0\}$$. We find an explicit expression of the maximum value with respect to the matrix geometric mean of Schur complements.

POSITIVENESS FOR THE RIEMANNIAN GEODESIC BLOCK MATRIX

  • Hwang, Jinmi;Kim, Sejong
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.917-925
    • /
    • 2020
  • It has been shown that the geometric mean A#B of positive definite Hermitian matrices A and B is the maximal element X of Hermitian matrices such that $$\(\array{A&X\\X&B}\)$$ is positive semi-definite. As an extension of this result for the 2 × 2 block matrix, we consider in this article the block matrix [[A#wijB]] whose (i, j) block is given by the Riemannian geodesics of positive definite Hermitian matrices A and B, where wij ∈ ℝ for all 1 ≤ i, j ≤ m. Under certain assumption of the Loewner order for A and B, we establish the equivalent condition for the parameter matrix ω = [wij] such that the block matrix [[A#wijB]] is positive semi-definite.

THE EFFECT OF BLOCK RED-BLACK ORDERING ON BLOCK ILU PRECONDITIONER FOR SPARSE MATRICES

  • GUESSOUS N.;SOUHAR O.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.283-296
    • /
    • 2005
  • It is well known that the ordering of the unknowns can have a significant effect on the convergence of a preconditioned iterative method and on its implementation on a parallel computer. To do so, we introduce a block red-black coloring to increase the degree of parallelism in the application of the block ILU preconditioner for solving sparse matrices, arising from convection-diffusion equations discretized using the finite difference scheme (five-point operator). We study the preconditioned PGMRES iterative method for solving these linear systems.

BILUS: A BLOCK VERSION OF ILUS FACTORIZATION

  • Davod Khojasteh Salkuyeh;Faezeh Toutounian
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.299-312
    • /
    • 2004
  • ILUS factorization has many desirable properties such as its amenability to the skyline format, the ease with which stability may be monitored, and the possibility of constructing a preconditioner with symmetric structure. In this paper we introduce a new preconditioning technique for general sparse linear systems based on the ILUS factorization strategy. The resulting preconditioner has the same properties as the ILUS preconditioner. Some theoretical properties of the new preconditioner are discussed and numerical experiments on test matrices from the Harwell-Boeing collection are tested. Our results indicate that the new preconditioner is cheaper to construct than the ILUS preconditioner.

IMPROVING THE SOLVABILITY OF ILL-CONDITIONED SYSTEMS OF LINEAR EQUATIONS BY REDUCING THE CONDITION NUMBER OF THEIR MATRICES

  • Farooq, Muhammad;Salhi, Abdellah
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.939-952
    • /
    • 2011
  • This paper is concerned with the solution of ill-conditioned Systems of Linear Equations (SLE's) via the solution of equivalent SLE's which are well-conditioned. A matrix is rst constructed from that of the given ill-conditioned system. Then, an adequate right-hand side is computed to make up the instance of an equivalent system. Formulae and algorithms for computing an instance of this equivalent SLE and solving it will be given and illustrated.