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THE DRAZIN INVERSES OF THE SUM OF TWO MATRICES

AND BLOCK MATRIX†
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Abstract. In this paper, we give a formula of (P +Q)D under the condi-
tions P 2Q+QPQ = 0 and P 3Q = 0. Then applying it to give some results

of block matrix M =

(
A B
C D

)
(A and D are square matrices) with gener-

alized Schur complement is zero under some conditions. Finally, numerical
examples are given to illustrate our results.
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1. Introduction

Let Cm×n denote the set of m× n complex matrices. The Drazin inverse
of A ∈ Cn×n is the unique matrix X, denoted by AD, satisfying the following
equations

Ak+1X = Ak, XAX = X, AX = XA,

where k = ind(A) is the index of A, the smallest nonnegative integer for which
rank(Ak+1) = rank(Ak) (see[1]). In particular, when ind(A) = 1, the Drazin
inverse of A is called the group inverse of A and is denoted by Ag. If A is
nonsingular, it is clearly ind(A) = 0 and AD = A−1. Throughout this paper,
we denote by Aπ = I − AAD and define A0 = I, where I is the identity matrix
with proper sizes.

The importance of the Drazin inverse and its applications to singular differen-
tial equations and difference equations, to Morkov chains and iterative methods,
to cryptography, to numerical analysis, to structured matrices and to perturba-
tion bounds for the relative eigenvalue problems can be found in [2, 3-5].
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In 1958, Drazin [6] gave a result of (P+Q)D with P and Q are square matrices
and proved that

(P +Q)D = PD +QD when PQ = QP = 0.

In 2001, Hartwig et al. [7] gave a result of (P +Q)D when PQ = 0. In 2005,
Castro-Gonzlez [8] gave a result of (P + Q)D when PDQ = 0, PQD = 0 and
QπPQPπ = 0. In 2008, Castro-Gonzlez et al. [9] gave the representation of
(P +Q)D when P 2Q = 0 and PQ2 = 0. In 2009, Martnez-Serrano and Castro-
Gonzlez [10] gave a result of (P + Q)D when P 2Q = 0 and Q2 = 0. In 2011,
Yang and Liu [10] gave the result of (P + Q)D when PQ2 = 0 and PQP = 0,
and in 2012, Bu et al. [12] gave the representation of (P +Q)D when P 2Q = 0,
Q2P = 0 and P 3Q = 0, QPQ = 0, QP 2Q = 0 respectively. Other results have
been studied in [4,13-15,16-18,19].

On the other hand, a related topic is to discuss a representation of the Drazin

inverse of block matrix M =

(
A B
C D

)
, where A and D are square matrices.

Campbell and Meyer [2] first proposed an open problem to find an explicit

formula of the Drazin inverse of block matrix M =

(
A B
C D

)
, (where A and D

are square matrices) in terms of A, B, C and D. To find the Drazin inverse of
(P +Q) and M in terms of P , Q, PD, QD and A, B, C, D, respectively, without
side condition are very difficult and it has not been solved till now.

The generalized Schur complement of A in M which is stated as S = D −
CADB, is very important to find the Drazin inverse of M . When the generalized
Schur complement is either zero or nonsingular, the Drazin inverse of M have
been studied in [10,20], when generalized Schur complement is equal to zero
and also has been studied in [10,21,22], when the generalized Schur complement
is nonsingular. Some representations for the Drazin inverse of M when the
generalized Schur complement is zero, including a generalizations of the above
mentioned results, will derived in section 4 under some conditions.

This paper is organized as follows. In section 2, some helpful lemmas will
be given. In section 3, we give the formula of (P + Q)D under the conditions
P 2Q+QPQ = 0, P 3Q = 0 and also give a numerical example to illustrate our
result. In section 4, we use our result to find the Drazin inverse of block matrix

M =

(
A B
C D

)
, when the generalized Schur complement is equal to zero, which

can be regarded as the generalizations of some results given in [5,20]. Finally, in
section 5, we give a numerical example to illustrate our result of block matrix.

2. Some Lemmas

In order to prove the main results, first we need the following lemmas.

Lemma 2.1 ([1]). Let A ∈ Cm×n, B ∈ Cn×m. Then (AB)D = A((BA)2)DB.

Lemma 2.2 ([7]). Let P,Q ∈ Cn×n, if PQ = 0, then
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(P +Q)D = Qπ
∑t−1

i=0 Q
i(PD)i+1 +

∑t−1
i=0(Q

D)i+1P iPπ,

where t = max{ind(P ), ind(Q)}.

Lemma 2.3 ([23]). Let M1 =

(
A 0
C B

)
, M2 =

(
B C
0 A

)
, where A and B are

square matrices with ind(A) = r and ind(B) = s, then

MD
1 =

(
AD 0
X BD

)
, MD

2 =

(
BD X
0 AD

)
,

where X =
∑r−1

i=0 (B
D)i+2CAiAπ +

∑s−1
i=0 BπBiC(AD)i+2 −BDCAD.

Lemma 2.4 ([20]). Let M =

(
A B
C D

)
∈ Cn×n ( A and D are square matrices),

if S = D − CADB = 0, AπB = 0 and CAπ = 0, then

MD =

(
I

CAD

)[
(AW )D

]2
A
(
I ADB

)
, W = AAD +ADBCAD.

3. Main results

In this section, we first give the formula for the Drazin inverse of P +Q under
some conditions.

Theorem 3.1. Let P,Q ∈ Cn×n, if P 2Q+QPQ = 0 and P 3Q = 0 then

(P +Q)D =
(
I Q

) t−1∑
i=0

(
(PQ)π PQX2 + (P 2Q+ PQ2)(PQ)D

0 (PQ)π

)

×
(
PQ P 2Q+ PQ2

0 PQ

)i (
(PD)2 0
X1 (QD)2

)i+1 (
P
I

)
+
(
I Q

) t−1∑
i=0

(
(PQ)D X2

0 (PQ)D

)i+1 (
P 2 0

P +Q Q2

)i

×
(

Pπ 0
PD +Q(PD)2 +Q2X1 Qπ

)(
P
I

)
,

(1)

where

X1 =

t−1∑
i=0

(QD)2i+4(P +Q)P 2iPπ +

t−1∑
i=0

QπQ2i(P +Q)(PD)2i+4 − (QD)2(P +Q)(PD)2,

X2 =

t−1∑
i=0

((PQ)D)i+2(P 2Q+ PQ2)(PQ)i(PQ)π +

t−1∑
i=0

(PQ)π(PQ)i(P 2Q+ PQ2)((PQ)D)i+2

− (PQ)D(P 2Q+ PQ2)(PQ)D

and

t = max{ind(P 2), ind(Q2), ind(PQ)}.
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Proof. Using Lemma 2.1, we have

(P +Q)D =

((
I Q

)(P
I

))D

=
(
I Q

)((P PQ
I Q

)2)D (
P
I

)
=
(
I Q

)(P 2 + PQ P 2Q+ PQ2

P +Q Q2 + PQ

)D (
P
I

)
.

(2)

Let

M =

(
P 2 + PQ P 2Q+ PQ2

P +Q Q2 + PQ

)
= E + F,

where E =

(
P 2 0

P +Q Q2

)
, F =

(
PQ P 2Q+ PQ2

0 PQ

)
.

From P 2Q + QPQ = 0 and P 3Q = 0, we get EF = 0. Then applying Lemma
2.2, we have

MD =
t−1∑
i=0

FπF i
(
ED

)i+1
+

t−1∑
i=0

(
FD

)i+1
EiEπ, (3)

where t = max{ind(E), ind(F )}.
Applying Lemma 2.3, we have

ED =

(
(PD)2 0
X1 (QD)2

)
, FD =

(
(PQ)D X2

0 (PQ)D

)
, (4)

where

X1 =

t−1∑
i=0

(QD)2i+4(P +Q)P 2iPπ +

t−1∑
i=0

QπQ2i(P +Q)(PD)2i+4 − (QD)2(P +Q)(PD)2,

X2 =

t−1∑
i=0

((PQ)D)i+2(P 2Q+ PQ2)(PQ)i(PQ)π +

t−1∑
i=0

(PQ)π(PQ)i(P 2Q+ PQ2)((PQ)D)i+2

− (PQ)D(P 2Q+ PQ2)(PQ)D

and

t = max{ind(P 2), ind(Q2), ind(PQ)}.

Substituting (4) into (3), then substituting (3) into (2), we get the result. �

Similarly, we give a symmetrical form of Theorem 3.1.
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Theorem 3.2. Let P,Q ∈ Cn×n, if PQ2 + PQP = 0 and PQ3 = 0 then

(P +Q)D =
(
I Q

) t−1∑
i=0

(
Pπ 0

PD +Q(PD)2 +Q2X1 Qπ

)

×
(

P 2 0
P +Q Q2

)i (
(PQ)D X2

0 (PQ)D

)i+1 (
P
I

)
+

(
I Q

) t−1∑
i=0

(
(PD)2 0
X1 (QD)2

)
i+ 1

(
PQ P 2Q+ PQ2

0 PQ

)i

×
(
(PQ)π PQX2 + (P 2Q+ PQ2)(PQ)D

0 (PQ)π

)(
P
I

)
,

(5)

where

X1 =

t−1∑
i=0

(Q
D
)
2i+4

(P + Q)P
2i
P

π
+

t−1∑
i=0

Q
π
Q

2i
(P + Q)(P

D
)
2i+4 − (Q

D
)
2
(P + Q)(P

D
)
2
,

X2 =

t−1∑
i=0

((PQ)
D
)
i+2

(P
2
Q + PQ

2
)(PQ)

i
(PQ)

π
+

t−1∑
i=0

(PQ)
π
(PQ)

i
(P

2
Q + PQ

2
)((PQ)

D
)
i+2

− (PQ)
D
(P

2
Q + PQ

2
)(PQ)

D
,

(6)

and

t = max{ind(P 2), ind(Q2), ind(PQ)}.

Next, we give a numerical example of Theorem 3.1 which does not satisfy the
conditions P 2Q = 0, Q2 = 0 in Theorem 2.2 in Ref. [10], but it satisfies the
conditions of our theorem 3.1.
Numerical example : Consider the matrices P,Q ∈ C4×4, where

P =


1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Q =


0 0 0 0
0 0 1 0
0 0 1 0
1 0 0 0

 .

Since P 2Q = 0 and Q2 ̸= 0, the result is not valid to apply in Theorem 2.2 in
Ref. [10]. But it satisfies P 2Q+QPQ = 0, P 3Q = 0, also we have

ind(P 2) = 1, ind(Q2) = 1, ind(PQ) = 2

and

(PQ)D = 0, X2 = 0,

X1 =


1 0 0 0
0 0 1 0
0 0 1 0
1 0 0 0

 , PD =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , QD =


0 0 0 0
0 0 1 0
0 0 1 0
0 0 0 0

 ,
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so applying Theorem 3.1, we get

(P +Q)D = PD + PQPD +QX1P +QD =


1 0 0 0
1 0 1 0
0 0 1 0
1 0 0 0

 .

4. Drazin inverse of a block matrix

In this section, we use our formula to give the representations for the Drazin
inverse of block matrix. Now we consider the generalized Schur complement is
equal to zero.

Theorem 4.1. Let M =

(
A B
C D

)
∈ Cn×n ( A and D are square matrices), if

S = D − CADB = 0, BCAπA = 0 and BCAπB = 0, then

MD =PD +

(
0 0

CAAπ CAπB

)(
PD

)3
+

(
0 0

CA2Aπ CAAπB

)
X1P

D

+

(
AAπ AπB
0 0

)
X1

(
A2AD AADB
C CADB

)
,

(7)

where

(PD)i =(PD
1 )i + (PD

1 )i+1

(
0 0

CAπ 0

)
, for i ≥ 1,

(PD
1 )i =

(
I

CAD

)[
(AW )D

]i+1
A
(
I ADB

)
,

W =AAD +ADBCAD, for i ≥ 1,

X1 =

(
A B
C D

)
(PD)4 +

t−1∑
i=1

(
A2iAπ A2i−1AπB

0 0

)(
A B
C D

)
(PD)2i+4,

(8)

and

t = max{ind(A2), ind((AW )2)}.

Proof. Let

M =

(
A B
C D

)
= P +Q,

where

P =

(
A2AD AADB
C CADB

)
, Q =

(
AAπ AπB
0 0

)
.

From BCAπA = 0 and BCAπB = 0, we have P 2Q + QPQ = 0 and P 3Q = 0.
We can see that Q is t+ 1−nilpotent, where t = ind(A), so we get QD = 0 and
Qπ = I. Moreover (PQ)2 = 0, so (PQ)D = 0. Applying Theorem 3.1, we have
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MD = PD + PQ(PD)3 + PQ2X1P
D +QX1P. (9)

where X1 is given in (4.2).

Let P = P1 + P2, where P1 =

(
A2AD AADB
CAAD CADB

)
, P2 =

(
0 0

CAπ 0

)
.

Now we have, P2P1 = 0 and P 2
2 = 0. By Lemma 2.2, we have

(PD)i = (PD
1 )i + (PD

1 )i+1P2, for i ≥ 1. (10)

Let S1 be the generalized Schur complement of P1, then we have

S1 = CADB − CAAD(A2AD)DAADB = 0,

(A2AD)πAADB = 0, CAAD(A2AD)π = 0.

Using Lemma 2.4, we get

(PD
1 )i =

(
I

CAD

)
[(AW )D]i+1A

(
I ADB

)
,

W = AAD +ADBCAD, for i ≥ 1,

(11)

Substituting (11) into (10), then substituting (10) into (9), we get the result. �

Similarly, we consider another splitting of the block matrix and state another
theorem.

Theorem 4.2. Let M =

(
A B
C D

)
∈ Cn×n ( A and D are square matrices), if

S = D − CADB = 0, AπBCAπ = 0 and ABCAπ = 0, then

MD =PD +

(
BCAπ 0

0 0

)
(PD)3 +

(
BCAπA 0

0 0

)
X1P

D

+

(
AAπ 0
CAπ 0

)
X1

(
A2AD B
CAAD CADB

)
,

(12)

where

(PD)i = (PD
1 )i +

(
0 AπB
0 0

)
PD
1 )i+1, for i ≥ 1

(PD
1 )i =

(
I

CAD

)
[(AW )D]i+1A

(
I ADB

)
, W = AAD +ADBCAD, for i ≥ 1

X1 =

(
A B
C D

)
(PD)4 +

t−1∑
i=1

(
A2iAπ 0

CA2i−1Aπ 0

)(
A B
C D

)
(PD)2i+4

and

t = max{ind(A2), ind((AW )2)}.
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Proof. Let

M =

(
A B
C D

)
= P +Q,

where

P =

(
A2AD B
CAAD CADB

)
, Q =

(
AAπ 0
CAπ 0

)
.

The remaining proof follows directly from Theorem 4.1. �

5. Numerical example

In this section, we give a numerical example to illustrate our result, when the
Schur complement is equal to zero and our other conditions of Theorem 4.1 are
also satisfied.

Example 5.1.

Let M =

(
A B
C D

)
, where

A =

1 0 0
0 0 1
0 0 0

 , B =

1 1
0 0
0 0

 , C =

(
1 1 1
1 −1 −1

)
, D =

(
1 1
0 0

)
.

By computing we obtain S = D − CADB = 0 and BCAπA = 0, BCAπB = 0.
Also we have

ind(A2) = 1, ind((AW )2) = 1,

AD =

1 0 0
0 0 0
0 0 0

 , (AW )D =

 1
2 0
0 0
0 0

 , Aπ =

0 0 0
0 1 0
0 0 1

 .

Then applying Theorem 4.1, we get

MD =


1
4 0 0 1

4
1
4

0 0 0 0 0
0 0 0 0 0
1
4 0 0 1

4
1
4

0 0 0 0 0

 .

Remark 1. Our above example shows that the conditions given in our Theorem
4.1 are satisfied but the conditions given in Theorem 3.6 in Ref. [10] are not
satisfied.
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