• Title/Summary/Keyword: Schottky-barrier

Search Result 317, Processing Time 0.029 seconds

Dielectric and Electric Properties of Maleate Copolymer LB Films (Maleate계 공중합체 LB막의 전기 및 유전 특성)

  • 유승엽;정상범;박재철;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.397-400
    • /
    • 1996
  • We investigated electric and dielectric properties of MIM device using Maleate Copolymer LB films. The thickness of maleate copolymer LB film by ellipsometry measurements and X-ray diffraction pattern was about 27~30[ ]. The maleate copolymer 13 film have the property of insulator like organic ultra-thin film. The electric conduction was Schottky current measured by I-V characteristics, and the conductivity was 10$^{-15}$ ~10$^{-14}$ [S/cm]. Dielectric constant was about 5.0~6.0 by various measurement: I-V, frequency-depenent dielectric properties. Schottky barrier was about 0.9 ~1.0(eV). By relation between log I and 1/T, activation energy baa 0.74(eV). Frequency-depenent dielectric properties wart orientational polarization by the dipole.

  • PDF

A study on the fabrication and its electrical characteristics of the schottky diodes on the laser anneled poly-si substrate (레이저 열처리된 다결정 실리콘 기판을 이용한 소트키 다이오드의 제작 및 그 전기적 특성에 관한 연구)

  • Kim, Jae-Yeong;Kang, Moon-Sang;Koo, Yong-Seo;An, Chul
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.4
    • /
    • pp.106-111
    • /
    • 1996
  • Schottky diodes are fabricated on laser annealed and unannealed polysilicon substrate and their electrical characteristics are studied and analyzed. Current of laser annealed devices are larger than that of unannealed devices because of grain growth, decrease of grain boundary and trap density, lowering of grain boundary barrier height, decrease of dopant segregation. At low forward bias (<0.7V), currents of unanealed devices are larger. Soft breakdown voltages of laser annealed devices are larger than that of unannealed devices.

  • PDF

High Dose $^{60}Co\;{\gamma}$-Ray Irradiation of W/GaN Schottky Diodes

  • Kim, Jihyun;Ren, F.;Schoenfeld, D.;Pearton, S.J.;Baca, A.G.;Briggs, R.D.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.124-127
    • /
    • 2004
  • W/n-GaN Schottky diodes were irradiated with $^{60}Co\;{\gamma}-rays$ to doses up to 315Mrad. The barrier height obtained from current-voltage (I-V) measurements showed minimal change from its estimated initial value of ${\sim}0.4eV$ over this dose range, though both forward and reverse I-V characteristics show evidence of defect center introduction at doses as low as 150 Mrad. Post irradiation annealing at $500^{\circ}C$ increased the reverse leakage current, suggesting migration and complexing of defects. The W/GaN interface is stable to high dose of ${\gamma}-rays$, but Au/Ti overlayers employed for reducing contact sheet resistance suffer from adhesion problems at the highest doses.

Study on DC Analysis of 4H-SiC Recessed-Gate MESFETs using modeling tooths (4H-SiC Recessed-gate MESFET의 DC특성 모델링 연구)

  • 박승욱;강수창;박재영;신무환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.238-242
    • /
    • 2001
  • In this paper, the current-voltage characteristics of a 4H-SiC MESFET is simulated by using the Atlas Simulation tool. we are able to use the simulator to extract more information about the new material 4H-SiC, including the mobility, velocity-field Curve and the Schottky barrier height. We have enabled and used the new simulator to investigate breakdown Voltage and thus predict operation limitations of 4H-SiC device. Modeling results indicate that the Breakdown Voltage is 197 V and Current is 100 mA

  • PDF

다결정 NiO박막의 전극물질이 resistance switching 현상에 미치는 영향

  • No, Yeong-Su;Kim, Yeong-Eun;Park, Dong-Hui;Kim, Tae-Hwan;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.224-224
    • /
    • 2010
  • Pt와 ITO 상부전극의 top-electode/NiO/Pt 구조에서 resistance switching현상을 연구하였다. 하부전극물질이 resistance switching현상에 미치는 영향은 이미 연구되었다. Ohmic 이나 low Schottky contact은 NiO 박막의 resistance switching 현상은 높은 전기장의 인가에 의해 것이 나타나는 것은 알 수 있었다. Ohmic contact에서는 유도전기장에 의한 resistance switching 현상들을 관찰할 수 있다. low Schottky barrier를 가지는 ITO/NiO/Pt 구조에서 resistances switching현상은 관찰되지 않고 Pt/ITO구조로 Ohmic 접촉은 유도전기장에 의한 resistance switching 현상이 나타나지 않음을 알 수 있었다.

  • PDF

Magnetoresistance Characteristics due to the Schottky Contact of Zinc Tin Oixide Thin Films (ZTO 박막의 쇼키접합에 기인하는 자기저항특성)

  • Li, XiangJiang;Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.120-123
    • /
    • 2019
  • The effect of surface plasmon on ZTO thin films was investigated. The phenomenon of depletion occurring in the interface of the ZTO thin film created a potential barrier and the dielectric layer of the depletion formed a non-mass particle called plasmon. ZTO thin film represents n-type semiconductor features, and surface current by plasma has been able to obtain the effect of improving electrical efficiency as a result of high current at positive voltage and low current at negative voltage. It can be seen that the reduction of electric charge due to recombination of electronic hole pairs by heat treatment of compound semiconductors induces higher surface current in semiconductor devices.

Stability of Gas Response Characteristics of IGZO (IGZO 박막의 CO2 가스 반응에 대한 안정성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.17-20
    • /
    • 2018
  • IGZO thin films were prepared on n-type Si substrates to research the interface characteristics between IGZO and substrate. After the annealing processes, the depletion layer was formed at the interface to make a Schottky contact owing to the electron-hall fair recombination. The carrier density was decreased by the effect of depletion layer and the hall mobility decreased during the deposition processes. But the annealing effect of depletion layer increased the hall mobility because of the increment of potential barrier and the extension of depletion layer. It was confirmed that it is useful to observe the depletion effect and Schottky contact's properties by complementary using the Hall measurement and I-V measurement.

Improved breakdown characteristics of Ga2O3 Schottky barrier diode using floating metal guard ring structure (플로팅 금속 가드링 구조를 이용한 Ga2O3 쇼트키 장벽 다이오드의 항복 특성 개선 연구)

  • Choi, June-Heang;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.193-199
    • /
    • 2019
  • In this study, we have proposed a floating metal guard ring structure based on TCAD simulation in order to enhance the breakdown voltage characteristics of gallium oxide ($Ga_2O_3$) vertical high voltage switching Schottky barrier diode. Unlike conventional guard ring structures, the floating metal guard rings do not require an ion implantation process. The locally enhanced high electric field at the anode corner was successfully suppressed by the metal guard rings, resulting in breakdown voltage enhancement. The number of guard rings and their width and spacing were varied for structural optimization during which the current-voltage characteristics and internal electric field and potential distributions were carefully investigated. For an n-type drift layer with a doping concentration of $5{\times}10^{16}cm^{-3}$ and a thickness of $5{\mu}m$, the optimum guard ring structure had 5 guard rings with an individual ring width of $1.5{\mu}m$ and a spacing of $0.2{\mu}m$ between rings. The breakdown voltage was increased from 940 V to 2000 V without degradation of on-resistance by employing the optimum guard ring structure. The proposed floating metal guard ring structure can improve the device performance without requiring an additional fabrication step.

Comparison of Electrical Properties of β-Gallium Oxide (β-Ga2O3) Power SBDs with Guard Ring Structures (Guard Ring 구조에 따른 β-산화갈륨(β-Ga2O3) 전력 SBDs의 전기적 특성 비교)

  • Hoon-Ki Lee;Kyujun Cho;Woojin Chang;Jae-Kyoung Mun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.208-214
    • /
    • 2024
  • This reports the electrical properties of single-crystal β-gallium oxide (β-Ga2O3) vertical Schottky barrier diodes (SBDs) with a different guard ring structure. The vertical Schottky barrier diodes (V-SBDs) were fabricated with two types guard ring structures, one is with metal deposited on the Al2O3 passivation layer (film guard ring: FGR) and the other is with vias formed in the Al2O3 passivation layer to allow the metal to contact the Ga2O3 surface (metal guard ring: MGR). The forward current values of FGR and MGR V-SBD are 955 mA and 666 mA at 9 V, respectively, and the specific on-resistance (Ron,sp) is 5.9 mΩ·cm2 and 29 mΩ·cm2. The series resistance (Rs) in the nonlinear section extracted using Cheung's formula was 6 Ω, 4.8 Ω for FGR V-SBD, 10.7 Ω, 6.7 Ω for MGR V-SBD, respectively, and the breakdown voltage was 528 V for FGR V-SBD and 358 V for MGR V-SBD. Degradation of electrical characteristics of the MGR V-SBD can be attributed to the increased reverse leakage current caused by the guard ring structure, and it is expected that the electrical performance can be improved by preventing premature leakage current when an appropriate reverse voltage is applied to the guard ring area. On the other hand, FGR V-SBD shows overall better electrical properties than MGR V-SBD because Al2O3 was widely deposited on the Ga2O3 surface, which prevent leakage current on the Ga2O3 surface.

Electron Transport of Low Transmission Barrier between Ferromagnet and Two-Dimensional Electron Gas (2DEG)

  • Koo, H.C.;Yi, Hyun-Jung;Ko, J.B.;Song, J.D.;Chang, Joon-Yeon;Han, S.H.
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.66-70
    • /
    • 2005
  • The junction properties between the ferromagnet (FM) and two-dimensional electron gas (2DEG) system are crucial to develop spin electronic devices. Two types of 2DEG layer, InAs and GaAs channel heterostructures, are fabricated to compare the junction properties of the two systems. InAs-based 2DEG layer with low trans-mission barrier contacts FM and shows ohmic behavior. GaAs-based 2DEG layer with $Al_2O_3$ tunneling layer is also prepared. During heat treatment at the furnace, arsenic gas was evaporated and top AlAs layer was converted to aluminum oxide layer. This new method of forming spin injection barrier on 2DEG system is very efficient to obtain tunneling behavior. In the potentiometric measurement, spin-orbit coupling of 2DEG layer is observed in the interface between FM and InAs channel 2DEG layers, which proves the efficient junction property of spin injection barrier.