• Title/Summary/Keyword: Schottky-barrier

Search Result 313, Processing Time 0.024 seconds

Improved performance of PEDOT:PSS/pentacene Schottky diode on EAPap (셀룰로우스 기반의 EAPap 작동기의 PEDOT_PSS/Pentacene를 이용한 Schottky diode 성능 개선)

  • Lim, Hyun-Kyu;Cho, Ki-Youn;Kang, Kwang-Sun;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.77-81
    • /
    • 2007
  • Pentacene was dissolved in N-methyspyrrolidone (NMP) and mixed with poly(3,4-ethylenedioxythiophene), poly(styrenesulfonate) (PEDOT:PSS). The solution color changed from deep purple to intense yellow. As the dissolution time increased, visible absorption decreased and ultraviolet (UV) absorption increased. PEDOT:PSS or Pentacene-PEDOT:PSS was spin-coated to control the layer thickness. Three-layered Schottky diodes consisting of Al, PEDOT:PSS or PEDOT:PSS-pentacene, and Au with thickness of 300nm, respectively, were fabricated. The current densities of $4.8{\mu}A/cm^2$ at 2.5MV/m and $660{\mu}A/cm^2$ at 1.9MV/m were obtained for the Au/PEDOT:PSS/Al and Au/Pentacene-PEDOT:PSS/Al Schottky diodes, respectively. The current density of the Schottky diode was enhanced by about two orders of magnitude by doping pentacene to PEDOT:PSS.

  • PDF

4H-SiC Trench-type Accumulation Super Barrier Rectifier(TASBR) for Low Forward Voltage drop (낮은 순방향 전압 강하를 갖는 4H-SiC Trench-type Accumulation Super Barrier Rectifier(TASBR))

  • Bae, Dong-woo;kim, Kwang-soo
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.73-76
    • /
    • 2017
  • SiC devices have drawn much attentions for its wide band gap material properties. Especially 4H-SiC Schottky barrier diode is widely used for its rapid switching speed and low forward voltage drop. However, the low reliability of Schottky barrier diode has many problems that Super Barrier Rectifier(SBR) was researched for alternative. makes 4H-SiC trench-type accumulation super barrier rectifier(TASBR) is analyzed and proposed in this paper. We could verified that forward voltage drop was improved 21.06% without severe degradation of reverse breakdown voltage and leakage current based on the results from 2-D numerical simulations. With this novel rectifier structure, we can expect application with less power loss.

Characterization of Hot Electron Transistors Using Graphene at Base (그래핀을 베이스로 사용한 열전자 트랜지스터의 특성)

  • Lee, Hyung Gyoo;Kim, Sung Jin;Kang, Il-Suk;Lee, Gi Sung;Kim, Ki Nam;Koh, Jin Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.147-151
    • /
    • 2016
  • Graphene has a monolayer crystal structure formed with C-atoms and has been used as a base layer of HETs (hot electron transistors). Graphene HETs have exhibited the operation at THz frequencies and higher current on/off ratio than that of Graphene FETs. In this article, we report on the preliminary results of current characteristics from the HETs which are fabricated utilizing highly doped Si collector, graphene base, and 5 nm thin $Al_2O_3$ tunnel layers between the base and Ti emitter. We have observed E-B forward currents are inherited to tunneling through $Al_2O_3$ layers, but have not noticed the Schottky barrier blocking effect on B-C forward current at the base/collector interface. At the common-emitter configuration, under a constant $V_{BE}$ between 0~1.2V, $I_C$ has increased linearly with $V_{CE}$ for $V_{CE}$ < $V_{BE}$ indicating the saturation region. As the $V_{CE}$ increases further, a plateau of $I_C$ vs. $V_{CE}$ has appeared slightly at $V_{CE}{\simeq}V_{BE}$, denoting forward-active region. With further increase of $V_{CE}$, $I_C$ has kept increasing probably due to tunneling through thin Schottky barrier between B/C. Thus the current on/off ration has exhibited to be 50. To improve hot electron effects, we propose the usage of low doped Si substrate, insertion of barrier layer between B/C, or substrates with low electron affinity.

A Study About Electrical Properties and Fabrication Schottky Barrirer Diode Prepared on Polar/Non-Polar of 6H-SiC (극성/무극성 6H-SiC 쇼트키 베리어 다이오드 제조 및 전기적 특성 연구)

  • Kim, Kyung-Min;Park, Sung-Hyun;Lee, Won-Jae;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.587-592
    • /
    • 2010
  • We have fabricated schottky barrier diode (SBDs) using polar (c-plane) and non polar (a-, m-plane) n-type 6H-SiC wafers. Ni/SiC ohmic contact was accomplished on the backside of the SiC wafers by thermal evaporation and annealed for 20minutes at $950^{\circ}C$ in mixture gas ($N_2$ 90% + $H_2$ balanced). The specific contact resistance was $3.6{\times}10^{-4}{\Omega}cm^2$ after annealing at $950^{\circ}C$. The XRD results of the alloyed contact layer show that formation of $NiSi_2$ layer might be responsible for the ohmic contact. The active rectifying electrode was formed by the same thermal evaporation of Ni thin film on topside of the SiC wafers and annealed for 5 minutes at $500^{\circ}C$ in mixture gas ($N_2$ 90% + $H_2$ balanced). The electrical properties of SBDs have been characterized by means of I-V and C-V curves. The forward voltage drop is about 0.95 V, 0.8 V and 0.8 V for c-, a- and m-plane SiC SBDs respectively. The ideality factor (${\eta}$) of all SBDs have been calculated from log(I)-V plot. The values of ideality factor were 1.46, 1.46 and 1.61 for c-, a- and m-plane SiC SBDs, respectively. The schottky barrier height (SBH) of all SBDs have been calculated from C-V curve. The values of SBH were 1.37 eV, 1.09 eV and 1.02 eV for c-, a- and m-plane SiC SBDs, respectively.

5-MeV Proton-irradiation characteristics of AlGaN/GaN - on-Si HEMTs with various Schottky metal gates

  • Cho, Heehyeong;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.484-487
    • /
    • 2018
  • 5 MeV proton-irradiation with total dose of $10^{15}/cm^2$ was performed on AlGaN/GaN-on-Si high electron mobility transistors (HEMTs) with various gate metals including Ni, TaN, W, and TiN to investigate the degradation characteristics. The positive shift of pinch-off voltage and the reduction of on-current were observed from irradiated HEMTs regardless of a type of gate materials. Hall and transmission line measurements revealed the reduction of carrier mobility and sheet charge concentration due to displacement damage by proton irradiation. The shift of pinch-off voltage was dependent on Schottky barrier heights of gate metals. Gate leakage and capacitance-voltage characteristics did not show any significant degradation demonstrating the superior radiation hardness of Schottky gate contacts on GaN.

Characteristics of Ni metallization on ICP-CVD SiG thin film and Ni/SiC Schottky diode (ICP-CVD로 성장된 SiC박막의 Ni 금속 접합과 Ni/SiC Schottky diode의 특성 분석)

  • Gil, Tae-Hyun;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.938-940
    • /
    • 1999
  • We have fabricated SiC Schottky diode for high temperature applications. SiC thin film for drift region has been deposited by ICP-CVD. In order to establish metallization conditions, we have extracted the device parameters of the Schottky diode from the forward I-V characteristics and the C-V characteristics as a function of temperature. The ideality factor was varied from 2.07 to 1.15 and the barrier height was also varied from 1.26eV to 1.92eV with increase of temperature. The reverse blocking voltage was 183 V.

  • PDF

Application of Nanoroll-Type Ag/g-C3N4 for Selective Conversion of Toxic Nitrobenzene to Industrially-Valuable Aminobenzene

  • Devaraji, Perumal;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.95-108
    • /
    • 2020
  • Silver nanoparticles were loaded onto g-C3N4 (CN) with a nanoroll-type morphology (Ag/CN) synthesized using a co-polymerization method for highly selective conversion of toxic nitrobenzene to industrially-valuable aminobenzene. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) images of Ag/CN revealed the generation of the nanoroll-type morphology of CN. Additionally, HRTEM analysis provided direct evidence of the generation of a Schottky barrier between Ag and CN in the Ag/CN nanohybrid. Photoluminescence analysis and photocurrent measurements suggested that the introduction of Ag into CN could minimize charge recombination rates, enhancing the mobility of electrons and holes to the surface of the photocatalyst. Compared to pristine CN, Ag/CN displayed much higher ability in the photocatalytic reduction of nitrobenzene to aminobenzene, underscoring the importance of Ag deposition on CN. The enhanced photocatalytic performance and photocurrent generation were primarily ascribed to the Schottky junction formed at the Ag/CN interface, greater visible-light absorption efficiency, and improved charge separation associated with the nanoroll morphology of CN. Ag would act as an electron sink/trapping center, enhancing the charge separation, and also serve as a good co-catalyst. Overall, the synergistic effects of these features of Ag/CN improved the photocatalytic conversion of nitrobenzene to aminobenzene.

The Effect of Surface Plasmon on Internal Photoemission Measured on Ag/$TiO_2$ Nanodiodes

  • Lee, Hyosun;Lee, Young Keun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.662-662
    • /
    • 2013
  • Over the last several decades, innovative light-harvesting devices have evolved to achieve high efficiency in solar energy transfer. Research on the mechanisms for plasmon resonance is very desirable to overcome the conventional efficiency limits of photovoltaics. The influence of localized surface plasmon resonance on hot electron flow at a metal-semiconductor interface was observed with a Schottky diode composed of a thin silver layer on $TiO_2$. The photocurrent is generated by absorption of photons when electrons have enough energy to travel over the Schottky barrier and into the titanium oxide conduction band. The correlation between the hot electrons and the surface plasmon is confirmed by matching the range of peaks between the incident photons to current conversion efficiency (IPCE, flux of collected electrons per flux of incident photons) and UV-Vis spectra. The photocurrent measured on Ag/$TiO_2$ exhibited surface plasmon peaks; whereas, in contrast to the Au/$TiO_2$, a continuous Au thin film doesn't exhibit surface plasmon peaks. We modified the thickness and morphology of a continuous Ag layer by electron beam evaporation deposition and heating under gas conditions and found that the morphological change and thickness of the Ag film are key factors in controlling the peak position of light absorption.

  • PDF

Effect on Metal Guard Ring in Breakdown Characteristics of SiC Schottky Barrier Diode (금속 가드 링이 SiC 쇼트키 다이오드의 항복전압에 미치는 영향)

  • Kim, Seong-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.877-882
    • /
    • 2005
  • In order to fabricate a high breakdown SiC-SBD (Schottky barrier diode), we investigate an effect on metal guard ring (MGR) in breakdown characteristics of the SiC-SBD. The breakdown characteristics of MGR-type SiC-SBD is significantly dependent on both the guard ring metal and the alloying time of guard ring metal. The breakdown characteristics of MGR-type SiC-SBDs are essentially improved as the alloying time of guard ring metal is increased. The SiC-SBD without MGR shows less than 200 V breakdown voltage, while the SiC-SBD with Al MGR shows approximately 700 V breakdown voltage. The improvement in breakdown characteristics is attributed to the field edge termination effect by the MGR, which is similar to an implanted guard ring-type SiC-SBD. There are two breakdown origins in the MGR-type SiC-SBD. One is due to a crystal defects, such as micropipes and stacking faults, in the Epi-layers and the SiC substrate, and occurs at a lower electric field. The other is due to the destruction of guard ring metal, which occurs at a higher electric field. The demolition of guard ring metal is due to the electric field concentration at an edge of Schottky contact metal.

Wireless Communication using Millimeter-Wave Envelope Detector (밀리미터파 포락선 검파기를 이용한 무선통신)

  • Lee, Won-Hui;Jang, Sung-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.79-82
    • /
    • 2017
  • In this paper, we proposed the wireless communication system using millimeter-wave envelope detector. The sub-harmonic mixer based on schottky barrier diode was used in the transmitter. The receiver was used millimeter-wave envelope detector. The transmitter was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antenna. The receiver was composed of horn antenna, millimeter-wave envelope detector, low pass filter, base band amplifier, and limiting amplifier. At 1.485 Gbps and 300 GHz, the eye-diagram showed a very good performance as measured by the error free. Communication distance is reduced compared to the heterodyne receiver, but compact and lightweight is possible.