• Title/Summary/Keyword: Schottky emission

Search Result 53, Processing Time 0.033 seconds

High Temperature Electrical Behavior of 2D Multilayered MoS2

  • Lee, Yeon-Seong;Jeong, Cheol-Seung;Baek, Jong-Yeol;Kim, Seon-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.377-377
    • /
    • 2014
  • We demonstrate the high temperature-dependent electrical behavior at 2D multilayer MoS2 transistor. Our previous reports explain that the extracted field-effect mobility of good device was inversely proportional to the increase of temperature. Because scattering mechanism is dominated by phonon scattering at a well-designed MoS2 transistor, having, low Schottky barrier. However, mobility at an immature our $MoS_2$ transistor (${\mu}m$ < $10cm^2V^{-1}s^{-1}$) is proportional to the increase temperature. The existence of a big Schottky barrier at $MoS_2-Ti$ junction can reduce carrier transport and lead to lower transistor conductance. At high temperature (380K), the field-effect mobility of multilayer $MoS_2$ transistor increases from 8.93 to $16.9cm^2V^{-1}sec^{-1}$, which is 2 times higher than the value at room temperature. These results demonstrate that carrier transport at an immature $MoS_2$ with a high Schottky barrier is mainly affected by thermionic emission over the energy barrier at high temperature.

  • PDF

The microstructure and conduction mechanism of the nonlinear ZnO varistor with $Al_2O_3$ additions ($Al_2O_3$가 미량 첨가된 비선형성 ZnO 바리스터의 미세구조와 전도기구)

  • 한세원;강형부;김형식
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.708-718
    • /
    • 1996
  • The microstructure and electrical properties of the nonlinear ZnO varistor with A1$_{2}$ $O_{3}$ additions is investigated. The variation of nonlinear behavior with A1$_{2}$ $O_{3}$ additions is indicated from J-E and C-V measurement to be a result of the change of the interface defects density $N_{t}$ at the grain boundaries and the donor concentration $N_{d}$ in the ZnO grains. The optimum composition which has the nonlinear coefficients of -57 was observed in the sample with 0.005wt% A1$_{2}$ $O_{3}$ additions. The conduction mechanism at the pre-breakdown region is consistent with a Schottky thermal emission process obeying a relation given by $J^{\var}$exp[-(.psi.-.betha. $E^{1}$2/)kT] and the conduction process at the breakdown region follows a Fowler-Nordheim tunneling mechanism of the form $J^{\var}$exp(-.gamma./E).

  • PDF

Schottky Barrier Free Contacts in Graphene/MoS2 Field-Effect-Transistor

  • Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.209.2-209.2
    • /
    • 2015
  • Two dimensional layered materials, such as transition metal dichalcogenides (TMDs) family have been attracted significant attention due to novel physical and chemical properties. Among them, molybdenum disulfide ($MoS_2$) has novel physical phenomena such as absence of dangling bonds, lack of inversion symmetry, valley degrees of freedom. Previous studies have shown that the interface of metal/$MoS_2$ contacts significantly affects device performance due to presence of a scalable Schottky barrier height at their interface, resulting voltage drops and restricting carrier injection. In this study, we report a new device structure by using few-layer graphene as the bottom interconnections, in order to offer Schottky barrier free contact to bi-layer $MoS_2$. The fabrication of process start with mechanically exfoliates bulk graphite that served as the source/drain electrodes. The semiconducting $MoS_2$ flake was deposited onto a $SiO_2$ (280 nm-thick)/Si substrate in which graphene electrodes were pre-deposited. To evaluate the barrier height of contact, we employed thermionic-emission theory to describe our experimental findings. We demonstrate that, the Schottky barrier height dramatically decreases from 300 to 0 meV as function of gate voltages, and further becomes negative values. Our findings suggested that, few-layer graphene could be able to realize ohmic contact and to provide new opportunities in ohmic formations.

  • PDF

Reverse-bias Leakage Current Mechanisms in Cu/n-type Schottky Junction Using Oxygen Plasma Treatment

  • Kim, Hogyoung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.113-117
    • /
    • 2016
  • Temperature dependent reverse-bias current-voltage (I-V) characteristics in Cu Schottky contacts to oxygen plasma treated n-InP were investigated. For untreated sample, current transport mechanisms at low and high temperatures were explained by thermionic emission (TE) and TE combined with barrier lowering, respectively. For plasma treated sample, experimental I-V data were explained by TE or TE combined with barrier lowering models at low and high temperatures. However, the current transport was explained by a thermionic field emission (TFE) model at intermediate temperatures. From X-ray photoemission spectroscopy (XPS) measurements, phosphorus vacancies (VP) were suggested to be generated after oxygen plasma treatment. VP possibly involves defects contributing to the current transport at intermediate temperatures. Therefore, minimizing the generation of these defects after oxygen plasma treatment is required to reduce the reverse-bias leakage current.

The Properties of Electrical Conduction and Photoconduction in Polyphenylene Sulfide(PPS) by Uniaxial Elongation (일축연신에 따른 Polyphenylene sulfide(PPS)의 전기전도 및 광전도 특성)

  • 이운용;장동욱;강성화;임기조;류부형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.223-226
    • /
    • 1998
  • In this paper, we have investigated how morphology and electrical properties in Polyphenylene sulfide(PPS) are changed by uniaxial elongation. XRD pattern shows that interplanar distance and crystallinities are decreased by increasing elongation ratio. Electrical conduction mechanism of PPS is explained as schottky emission from analysis of electrical current. The electrical current is decreased by increasing elongation ratio. The conductivity is changed remarkably above the glass transition temperature around $(82^{\circ}C)$. The band gap of PPS is evaluated as 3.9-4(eV) from the results of photoconductivity. Increarnent of elongation ratio gives us some information about deep trap formation from photocurrent.

  • PDF

The Properties of Electrical Conduction and Photoconduction in polyphenylene Sulfide(PPS) by Uniaxal Elongation (일축연신에 따른 Polyphenylene Sulfide(PPS)의 전기전도 및 광전도 특성)

  • Lee, Un-Yong;Jang, Dong-Uk;Shin, Tae-Su;Lim, kee-Joe;Ryu, Boo-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.763-767
    • /
    • 1998
  • In this paper, it is investigated how the morphology and electrical properties in Polyphenylene Sulfide(PPS) changed by uniaxial elongation. XRD(X-ray diffraction) pattern shows that interplanar distance and crystallinities are decreased by increasing elongation ratio. electrical conduction mechanism of PPS is explained as Schottky emission mechanism. the electrical current is decreased by increasing elongation ratio. The conductivity is changed considerably above the glass transition temperature around 82(>$^{\circ}C$). The band gap of PPS is evaluated as 3.7~4(eV)

  • PDF

$(Ba, Sr)TiO_3$박막의 전기적 성질과 전도기구 해석

  • 정용국;손병근;이창효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.69-69
    • /
    • 2000
  • (Ba, Sr)TiO3 (BST)[1-3] 박막은 유전상수가 크고 고주파에서도 유전특성 저하가 적기 때문에 ULSI DRAM(Dynamic Random Access Memory)에 응용 가능한 물질로 최근 각광을 받고 있다. 하지만, 아직 BST 박막을 DRSM에 바로 적용하기 위해선 몇 가지 문제점이 있다. 그 중 누설전류 문제는 디바이스 응용시 매우 중요한 요소이다. 특히, DRAM에서 refresh time와 직접적인 관련이 있어 디바이스 내의 신뢰도 및 전력소모를 결정하는 주된 인자가 된다. 지금까지, BST 박막의 인가전업, 온도, 그리고 전극물질에 따른 누설전류 현상들이 고찰되었고, 이에 관한 많은 전도기구 모델들이 제시되었다. Schottky emission, Poole-Frenkel emission, space charge limited conduction 등이 그 대표적인 예이다. 하지만 아쉽게도 BST 박막의 정확한 누설 전류 전도 기구를 완전히 설명하는데는 아직 한계가 있다. 따라서 본 연구에서는 제작된 BST 커패시터 내의 기본적인 전기적 성질을 조사하고, 정확한 누설전류 기구 규명에 초점을 두고자 한다. 이를 위해 기존의 여러 기구들과 비교 분석할 것이다. 하부전극으로 사용하기 위해 스퍼터링 방법으로 p-Si(100) 기판위에 RuO2 박막을 약 120nm 증착하였다. 증착전의 chamberso의 초기압력은 5$\times$10-6 Torr이하의 압력으로 유지시켰다. Ar/O2의 비는 이전 실험에서 최적화된 9/1로 하였다. BST 박막 증착 시 5분간 pre-sputtering을 실시한 후 하부전극 기판위에 BST 박막을 증착하였다. 증착이 끝난 후 시편을 상온까지 냉각시킨 후 꺼내었다. 전기적 특성을 측정하기 상부전극으로 RuO2와 Al 박막을 각각 상온에서 100nm 증착하였다. 이때 hole mask를 이용하여 반경이 140um인 원형의 상부전극을 증착하였다. BST 박막의 증착온도가 증가하고 Ar/O2 비가 감소할수록 제작된 BST-커패시터의 전기적 성질이 우수하였다. 증착온도 $600^{\circ}C$, ASr/O2=5/5에서 증착된 막의 누설전류는 4.56$\times$10-8 A/cm2, 유전상수는 600 정도의 값을 나타내었다. 인가전압에 따른 BST 커패시터의 transition-current는 Curie-von Schweider 모델을 따랐다. BST 박막의 누설전류 전도기구는 기존의 Schottky 모델이 아니라 modified-Schottky 무델로 잘 설명되었다. Modified-Schottky 모델을 통해 BST 박막의 광학적 유전율 $\varepsilon$$\infty$=4.9, 이동도 $\mu$=0.019 cm2/V-s, 장벽 높이 $\psi$b=0.79 eV를 구하였다.

  • PDF

Electrical Characterization of Nanoscale $Au/TiO_2$ Schottky Diodes Probed with Conductive Atomic Force Microscopy

  • Lee, Hyunsoo;Van, Trong Nghia;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.290.1-290.1
    • /
    • 2013
  • The electrical characterization of Au islands on TiO2 at nanometer scale (as a Schottky nanodiode) has been studied with conductive atomic force microscopy in ultra-high vacuum. The diverse sizes of the Au islands were formed by using self-assembled patterns on n-type TiO2 semiconductor film using the Langmuir-Blodgett process. Local conductance images showing the current flowing through the TiN coated AFM probe to the surface of the Au islands on TiO2 was simultaneously obtained with topography, while a positive sample bias is applied. The boundary of the Au islands revealed a higher current flow than that of the inner Au islands in current AFM images, with the forward bias presumably due to the surface plasmon resonance. The nanoscale Schottky barrier height of the Au/TiO2 Schottky nanodiode was obtained by fitting the I-V curve to the thermionic emission equation. The local resistance of the Au/TiO2 nanodiode appeared to be higher at the larger Au islands than at the smaller islands. The results suggest that conductive atomic force microscopy can be used to reveal the I-V characterization of metal size dependence and the electrical effects of surface plasmon on a metal-semiconductor Schottky diode at nanometer scale.

  • PDF

Resistive Switching Characteristics of Amorphous GeSe ReRAM without Metalic Filaments Conduction

  • Nam, Gi-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.368.1-368.1
    • /
    • 2014
  • We proposed amorphous GeSe-based ReRAM device of metal-insulator-metal (M-I-M) structure. The operation characteristics of memory device occured unipolar switching characteristics. By introducing the concepts of valance-alternation-pairs (VAPs) and chalcogen vacancies, the unipolar resistive switching operation had been explained. In addition, the current transport behavior were analyzed with space charge effect of VAPs, Schottky emission in metal/GeSe interface and P-F emission by GeSe bulk trap in mind. The GeSe ReRAM device of M-I-M structure indicated the stable memory switching characteristics. Furthermore, excellent stability, endurance and retention characteristics were also verified.

  • PDF

Current-Voltage Characteristics of Schottky Barrier SOI nMOS and pMOS at Elevated Temperature (고온에서 Schottky Barier SOI nMOS 및 pMOS의 전류-전압 특성)

  • Ka, Dae-Hyun;Cho, Won-Ju;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.21-27
    • /
    • 2009
  • In this work, Er-silicided SB-SOI nMOSFET and Pt-silicided SB-SOI pMOSFET have been fabricated to investigate the current-voltage characteristics of Schottky barrier SOI nMOS and pMOS at elevated temperature. The dominant current transport mechanism of SB nMOS and pMOS is discussed using the measurement results of the temperature dependence of drain current with gate voltages. It is observed that the drain current increases with the increase of operating temperature at low gate voltage due to the increase of thermal emission and tunneling current. But the drain current is decreased at high gate voltage due to the decrease of the drift current. It is observed that the ON/Off current ratio is decreased due to the increased tunneling current from the drain to channel region although the ON current is increased at elevated temperature. The threshold voltage variation with temperature is smaller and the subthreshold swing is larger in SB-SOI nMOS and pMOS than in SOI devices or in bulk MOSFETs.