• Title/Summary/Keyword: School Dust

Search Result 539, Processing Time 0.024 seconds

Novel Defog Algorithm via Evaluation of Local Color Saturation (국부영역 색포화 평가 방법을 통한 안개제거 알고리즘)

  • Park, Hyungjo;Park, Dubok;Ko, Hanseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.119-128
    • /
    • 2014
  • This paper presents a new method for improving the quality of images corrupted by an external source that generates an attenuation and scattering of light like dust, water droplets and fog. Conventional defog methods typically encounter a distortion such that the restored image has low contrast and oversaturation of color in some regions because of the mis-estimated airlight and wrong media transmission. Therefore, in order to mitigate these problems, we propose a robust airlight selection method and local saturation evaluation method for estimating media transmission. The proposed method addresses the wrong media transmission and over-saturation problems caused by the mis-estimated airlight and thereby improves the restored image quality. The results of relevant experiments of the proposed method against conventional ones confirm the improved accuracy of atmospheric light estimation and the quality of restored images with regard to objective and subjective performance measures.

Detonation Initiation via Surface Chemical Reaction of Laser-Ablated Aluminum Sample (표면화학 반응을 통한 Laser-Ablated 알루미늄의 Detonation 현상 연구)

  • Kim, Chang-Hwan;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.197-204
    • /
    • 2012
  • We explore the evolution of metal plasma generated by high laser irradiances and its effect on the surrounding air by using shadowgraph images after laser pulse termination and X-ray diffraction (XRD) of aluminum plasma ablated by a high-power laser pulse (>1000 mJ/pulse) and oxygen from air. Hence, the formation of laser-supported detonation and combustion processes has been investigated. The essence of this paper is in observing the initiation of chemical reaction between the ablated aluminum plasma and oxygen from air by the high-power laser pulse (>1000 mJ/pulse) and in conducting a quantitative comparison of the chemically reactive laser-initiated waves with the classical detonation of an exploding aluminum (dust) cloud in air. The findings in this work may lead to a new method of initiating detonation from a metal sample in its bulk form without any need to mix nanoparticles with oxygen for initiation.

Suppressive Effect of Der p 2 on Constitutive Neutrophil Apoptosis by Cytokine Secretion of Normal and Allergic Lymphocytes (정상인과 알레르기 환자의 림프구에서 Der p 2에 의한 사이토카인 분비가 호중구의 세포고사 억제에 미치는 효과)

  • Kim, In Sik;Lee, Na Rae;Lee, Ji-Sook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.102-108
    • /
    • 2016
  • Der p 2 is the major allergen of the house dust mite (HDM) associated with the development of allergic diseases. The pathogenic mechanism of the allergy is related to cytokine release of lymphocytes and constitutive apoptosis of neutrophils. In the present study, we examined whether Der p 2 induces cytokine release of lymphocytes, which is involved in regulation of neutrophil apoptosis. In normal and allergic subjects, Der p 2 enhanced the secretion of IL-6, IL-8, MCP-1, and GM-CSF in a time-dependent manner. Although Der p 2 was weakly effective against neutrophil apoptosis, conditioned media collected from normal and allergic lymphocytes after Der p 2 treatment inhibited the apoptosis of normal and allergic neutrophils. Der p 2 showed stronger inhibition of apoptosis of allergic neutrophils cocultured with allergic lymphocytes than normal neutrophils cocultured with normal lymphocytes. These findings improve our understanding of the role of Der p 2 in regulation of lymphocytes and neutrophils and will enable elucidation of allergy pathogenesis.

Evaluation of the Relationship between Filter Replacement and Filter Performance Change in Particulate Respirators (방진 마스크 필터 교체와 성능 변화의 상관성 조사)

  • Lee, Heonyung;Park, Jihoon;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.283-290
    • /
    • 2017
  • Objectives: This study aimed to evaluate the relationship between filter replacement and filter performance change in particulate filters used in the workplace. Methods: Three types of particulate respirator filters are mainly used in the workplaces. These were tested against the filter performance safety certification standard for dust masks established by the Ministry of Employment and Labor(MoEL). Used filters were collected to test their performance, such as filter pressure drop, efficiency, and quality factors. All these factors were evaluated by a filter tester. To compare filter performance between used and new ones, the same kinds of new filters were also tested together under the same procedures. Results: A total of 270 used filters were collected for testing. The main reasons to replace the filters were difficulty in breathing(46.2%), dirty/odor influx(19.7%), and a combination of factors(26.7%). The pressure drop for two special class groups was significantly different(new filters: $20.72{\pm}3.33mmH_2O$; used filters: $24.70{\pm}5.26mmH_2O$, p<0.0001). In the case of penetration, new filter groups indicated $0.0032{\pm}0.0040%$, while that of the used filters was $0.0596{\pm}0.1187%$. The quality factor for the used filters($0.34{\pm}0.09$) significantly decreased compared to the new filters($0.53{\pm}0.08$) (p<0.0001). Conclusions: Filter performance including pressure drop, penetration, and the quality factor was evaluated and compared between new and used filters in the workplace. The results showed that general filter performance deteriorated more for change of pressure drop, penetration and the quality factor.

14 Planck Galactic Cold Clumps in the λ Orionis Complex: No dense cores detected with SCUBA-2

  • Yi, Hee-Weon;Lee, Jeong-Eun;Liu, Tie;Kim, Kee-Tae;Wu, Yuefang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.73.1-73.1
    • /
    • 2016
  • We present preliminary results of the submillimeter continuum observations of 14 Planck Galactic Cold Clumps (PGCCs), located in the ${\lambda}$ Orionis Complex. This region is the nearest large HII region, which is an ideal site for a study of the stellar feedback to its surroundings. We observed 14 PGCCs with JCMT/SCUBA-2 and used J=1-0 transitions of CO isotopologues from the PMO mapping observation. Several sub-clumps toward three PGCCs were detected at $850{\mu}m$. In order to examine whether these clumps can be candidates for pre-stellar cores, we compared each clump mass calculated from the $850{\mu}m$ continuum map to its Virial mass and Jeans mass calculated from the $^{12}CO$ and $C^{18}O$ (1-0) spectra, respectively. All clumps have masses smaller than their Virial and Jeans masses, indicating that none of them are gravitational bound and thus in the pre-stellar core stage. Also, the CO depletion factor, which has been derived from the dust continuum and the $C^{18}O$(1-0) line and can be an indicator of core evolution, toward the clumps is in the range of 1 to 5, suggesting that they are not very evolved dense pre-stellar cores. In addition, within individual PGCCs, we found clear gradients of velocity (${\sim}1km\;s^{-1}\;pc^{-1}$) and temperature (${\sim}10K\;pc^{-1}$) in the $^{13}CO$ (1-0) first moment map and the $^{12}CO$(1-0) excitation temperature map, respectively. This can be attributed to the compression and external heating by the HII region, which may prevent clumps from forming gravitationally bound structures and eventually disperse clumps. These results could be a hint about the negative effect of stellar feedback on core formation.

  • PDF

Filterless Removal of PM2.5 Dusts by Condensational Growth (응축성장을 이용한 PM2.5 초미세먼지의 무필터 제거)

  • Pyo, Juwon;Lee, Donggeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.221-228
    • /
    • 2017
  • We proposed a novel method to remove PM2.5 dusts without HEPA filters aiming at applications in kitchens or enclosed work spaces generating PM2.5 at high concentrations. Many workers are exposed to PM2.5 owing to lack of air purification because the high replacement costs of HEPA filters make their application impractical. A key idea is to use the condensational growth of nanoparticles. Once particles grow to the size of a few micrometers, it is much easier to remove them because of their increased inertia. We developed and tested a prototype consisting of an air saturator (equipped with water spray nozzles), a condenser in which humid air was cooled down to make the particles grow, and a multi-impactor assembly for collecting the grown particles.

The Current Status and Recommendation of Work Environment Management in Small Scale Industry with less than 5 Workers (경인지역 일부 5인미만 사업장 근로자의 작업환경실태와 관리대책)

  • Kim, Dea Sic;Roh, Youngman;Kim, Hyun Wook;Jeong, Chun Hwa;You, Ki ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.179-189
    • /
    • 2001
  • This study was performed to identify the current status of work environment management and to provide appropriate recommendations for small scale industry with less than 5 workers from September, 2000 to October, 2000 in Seoul city and Gyoung-gi province. The 211 companies were surveyed by checklist included the elements of management of work environment, hazardous chemicals, MSDS, personal protective equipment, and ventilation system. The proportion of metal products manufacturing and printing industries are 25.6 % and 22.3%, respectively. The daily working hours in printing industry is longer than others. The industries that produce potentially hazardous agents, such as noise, dust, metal, organic solvents, radiation and chemical material are pulp, plating, machinery, and printing, respectively. In above industries, only 2.8 % of those recognised and had MSDS. The proportion of companies providing fire extinguishers, safety showers are found to be 13.3 %, 7.1 %, respectively. Only 24.2 % of companies provided personal protective equipment to the workers. The ventilation system was operated in most of companies. But local exhaust ventilation system is provided to 22.3 % of those, also had not been annually inspected. This study showed that the current status of occupational safety and health was not appropriate for workers in small scale industries. It is suggested that annual physical examination have to be performed, MSDS usage must become widespread, and employer and emplyees in small scale industry should be educated for the treatment and storage of hazardous chemicals to improve the occupational safety and health of the working environment. also, regulatory standard has to be applied to local exhaust ventilation system in small scale industry to improve the working condition.

  • PDF

Tracing history of the episodic accretion process in protostars

  • Kim, Jaeyeong;Lee, Jeong-Eun;Kim, Chul-Hwan;Hsieh, Tien-Hao;Yang, Yao-Lun;Murillo, Nadia;Aikawa, Yuri;Jeong, Woong-Seob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.66.3-67
    • /
    • 2021
  • Low-mass stars form by the gravitational collapse of dense molecular cores. Observations and theories of low-mass protostars both suggest that accretion bursts happen in timescales of ~100 years with high accretion rates, so called episodic accretion. One mechanism that triggers accretion bursts is infalling fragments from the outer disk. Such fragmentation happens when the disk is massive enough, preferentially activated during the embedded phase of star formation (Class 0 and I). Most observations and models focus on the gas structure of the protostars undergoing episodic accretion. However, the dust and ice composition are poorly understood, but crucial to the chemical evolution through thermal and energetic processing via accretion burst. During the burst phase, the surrounding material is heated up, and the chemical compositions of gas and ice in the disk and envelope are altered by sublimation of icy molecules from grain surfaces. Such alterations leave imprints in the ice composition even when the temperature returns to the pre-burst level. Thus, chemical compositions of gas and ice retain the history of past bursts. Infrared spectral observations of the Spitzer and AKARI revealed a signature caused by substantial heating, toward many embedded protostars at the quiescent phase. We present the AKARI IRC 2.5-5.0 ㎛ spectra for embedded protostars to trace down the characteristics of accretion burst across the evolutionary stages. The ice compositions obtained from the absorption features therein are used as a clock to measure the timescale after the burst event, comparing the analyses of the gas component that traced the burst frequency using the different refreeze-out timescales. We discuss ice abundances, whose chemical change has been carved in the icy mantle, during the different timescales after the burst ends.

  • PDF

Complex organic molecules detected in twelve high mass star forming regions with ALMA

  • Baek, Giseon;Lee, Jeong-Eun;Hirota, Tomoya;Kim, Kee-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.37.3-38
    • /
    • 2021
  • One of the key questions on star formation is how the organic molecules are synthesized and delivered to the planets and comets since they are the building blocks of prebiotic molecules such as amino acid, which is thought to contribute to bringing life on Earth. Recent astrochemical models and experiments have explained that complex organic molecules (COMs; molecules composed of six or more atoms) are produced on the dust grain mantles in cold and dense gas in prestellar cores. However, the chemical networks and the roles of physical conditions on chemistry are not still understood well. To address this question, hot (> 100 K) cores in high mass young stellar objects (M > 8 Msun) are great laboratories due to their strong emissions and larger samples than those of low-mass counterparts. In addition, CH3OH masers, which have been mostly found in high mass star forming regions, can provide constraints due to their very unique emerging mechanisms. We investigate twelve high mass star forming regions in ALMA band 6 observation. They are associated with 44/95 GHz Class I and 6.7 GHz Class II CH3OH masers, implying that the active accretion processes are ongoing. For these previously unresolved regions, 66 continuum peaks are detected. Among them, we found 28 cores emitting COMs and specified 10 cores associated with 6.7 GHz Class II CH3OH masers. The chemical diversity of COMs is found in cores in terms of richness and complexity; we identified up to 19 COMs including oxygen- and nitrogen-bearing molecules and their isotopologues in a core. Oxygen-bearing molecules appear to be abundant and more complex than nitrogen-bearing species. On the other hand, the COMs detection rate steeply grows with the gas column density, which can be attributed to the effective COMs formation in dense cores.

  • PDF

Sensitivity of Aerosol Optical Parameters on the Atmospheric Radiative Heating Rate (에어로졸 광학변수가 대기복사가열률 산정에 미치는 민감도 분석)

  • Kim, Sang-Woo;Choi, In-Jin;Yoon, Soon-Chang;Kim, Yumi
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • We estimate atmospheric radiative heating effect of aerosols, based on AErosol RObotic NETwork (AERONET) and lidar observations and radiative transfer calculations. The column radiation model (CRM) is modified to ingest the AERONET measured variables (aerosol optical depth, single scattering albedo, and asymmetric parameter) and subsequently calculate the optical parameters at the 19 bands from the data obtained at four wavelengths. The aerosol radiative forcing at the surface and the top of the atmosphere, and atmospheric absorption on pollution (April 15, 2001) and dust (April 17~18, 2001) days are 3~4 times greater than those on clear-sky days (April 14 and 16, 2001). The atmospheric radiative heating rate (${\Delta}H$) and heating rate by aerosols (${\Delta}H_{aerosol}$) are estimated to be about $3\;K\;day^{-1}$ and $1{\sim}3\;K\;day^{-1}$ for pollution and dust aerosol layers. The sensitivity test showed that a 10% uncertainty in the single scattering albedo results in 30% uncertainties in aerosol radiative forcing at the surface and at the top of the atmosphere and 60% uncertainties in atmospheric forcing, thereby translated to about 35% uncertainties in ${\Delta}H$. This result suggests that atmospheric radiative heating is largely determined by the amount of light-absorbing aerosols.