DOI QR코드

DOI QR Code

Filterless Removal of PM2.5 Dusts by Condensational Growth

응축성장을 이용한 PM2.5 초미세먼지의 무필터 제거

  • Pyo, Juwon (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Donggeun (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2016.04.12
  • Accepted : 2017.01.08
  • Published : 2017.04.01

Abstract

We proposed a novel method to remove PM2.5 dusts without HEPA filters aiming at applications in kitchens or enclosed work spaces generating PM2.5 at high concentrations. Many workers are exposed to PM2.5 owing to lack of air purification because the high replacement costs of HEPA filters make their application impractical. A key idea is to use the condensational growth of nanoparticles. Once particles grow to the size of a few micrometers, it is much easier to remove them because of their increased inertia. We developed and tested a prototype consisting of an air saturator (equipped with water spray nozzles), a condenser in which humid air was cooled down to make the particles grow, and a multi-impactor assembly for collecting the grown particles.

본 연구에서는 부엌이나 밀폐 작업장과 같이 PM2.5 초미세먼지가 고농도로 발생하는 장소에 적용 가능한 무필터 초미세먼지 정화기술을 제안하고자 한다. 이런 장소에서는 기존 필터기반의 공기정화기는 높은 필터교체비용으로 인해 적용이 불가능하여 작업자가 고농도 PM2.5 초미세먼지에 직접 노출되는 심각한 문제가 있다. 입자가 수 마이크론의 크기로 성장하면 증가한 관성으로 쉽게 제거가능하기 때문에 본 연구에서는 초미세먼지의 응축성장에 집중하였다. 물분무를 이용하는 공기포화기, 수증기를 응축시켜 입자를 성장시키는 응축기, 멀티임팩터 제거기로 구성된 시제품을 개발하였고 낮은 유량의 랩스케일 실험에서 실제 공기청정기 유량 조건에서 그 성능을 검증하였다.

Keywords

References

  1. Maynard, A. D. and Kuempel, E. D., 2005, "Airborne Nanostructured Particles and Occupational Health," Journal of Nanoparticle Research, Vol. 7, No. 6, pp. 587-614. https://doi.org/10.1007/s11051-005-6770-9
  2. Sippula, O., Hokkinen, J., Puustinen, H., Yli-Pirila, P. and Jokiniemi, J., 2009, "Comparison of Particle Emissions from Small Heavy Fuel Oil and Wood-fired Boilers," Atmospheric Environment, Vol. 43, No. 32, pp. 4855-4864. https://doi.org/10.1016/j.atmosenv.2009.07.022
  3. Johansson, L. S., Tullin, C., Leckner, B. and Sjovall, P., 2003, "Particle Emissions from Biomass Combustion in Small Combustors," Biomass and Bioenergy, Vol. 25, No. 4, pp. 435-446. https://doi.org/10.1016/S0961-9534(03)00036-9
  4. Fisk, W. J., Faulkner, D., Palonen, J. and Seppanen, O., 2002, "Performance and Costs of Particle Air Filtration Technologies," Indoor Air, Vol. 12, No. 4, pp. 223-234. https://doi.org/10.1034/j.1600-0668.2002.01136.x
  5. Wallace, L. A., Emmerich, S. J. and Howard-Reed, C., 2004, "Source Strengths of Ultrafine and Fine Particles Due to Cooking with a Gas Stove," Environmental Science and Technology, Vol. 38, No. 8, pp. 2304-2311. https://doi.org/10.1021/es0306260
  6. Brand, P., Lenz, K., Reisgen, U. and Kraus, T., 2012, "Number Size Distribution of Fine and Ultrafine Fume Particles From Various Welding Processes," Annals of Occupational Hygiene, Vol. 57, No. 3, pp. 305-313. https://doi.org/10.1093/annhyg/mes070
  7. Marple, V. A. and Willeke, K., 1976, "Impactor Design," Atmospheric Environment, Vol. 10, No. 10, pp. 891-896. https://doi.org/10.1016/0004-6981(76)90144-X
  8. Stolzenburg, M. R. and McMurry, P. H., 1991, "An Ultrafine Aerosol Condensation Nucleus Counter," Aerosol Science and Technology, Vol. 14, No. 1, pp. 48-65. https://doi.org/10.1080/02786829108959470
  9. Orsini, D. A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K. and Weber, R. J., 2003, "Refinements to the Particle-into-liquid Sampler (PILS) for Ground and Airborne Measurements of Water Soluble Aerosol Composition," Atmospheric Environment, Vol. 37, No. 9-10, pp. 1243-1259. https://doi.org/10.1016/S1352-2310(02)01015-4
  10. Demokritou, P., Gupta, T. and Koutrakis, P., 2002, "A High Volume Apparatus for the Condensational Growth of Ultrafine Particles for Inhalation Toxicological Studies," Aerosol Science and Technology, Vol. 36, No. 11, pp. 1061-1072. https://doi.org/10.1080/02786820290092230
  11. Lee, D., Park, K. and Zachariah, M. R., 2005, "Determination of the Size Distribution of Polydisperse Nanoparticles with Single-Particle Mass Spectrometry: The Role of Ion Kinetic Energy," Aerosol Science and Technology, Vol. 39, No. 2, pp. 162-169. https://doi.org/10.1080/027868290904537
  12. Hinds, W. C., 1999, Aerosol technology: properties, behavior, and measurement of airborne particles, John Wiley & Sons, 2nd ed., Los Angeles.
  13. Kousaka, Y., Niida, T., Okuyama, K. and Tanaka, H., 1982, "Development of a Mixing Type Condensation Nucleus Counter," Journal of Aerosol Science, Vol. 13, No. 3, pp. 231-240. https://doi.org/10.1016/0021-8502(82)90064-7
  14. Munday, J. T. and Bagster, D. F., 1977, "A New Ejector Theory Applied to Steam Jet Refrigeration," Industrial and Engineering Chemistry Process Design and Development, Vol. 16, pp. 442-449. https://doi.org/10.1021/i260064a003
  15. Lee, K. S., Cho, S.-W. and Lee, D., 2008, "Development and Experimental Evaluation of Aerodynamic Lens as an Aerosol Inlet of Single Particle Mass Spectrometry," Journal of Aerosol Science, Vol. 39, No. 4, pp. 287-304. https://doi.org/10.1016/j.jaerosci.2007.10.011