• Title/Summary/Keyword: Schiff-Base ligands

Search Result 48, Processing Time 0.022 seconds

Analysis of Tridentate Schiff Base Ni(II) Complex (세자리 Schiff Base의 Ni(II) 착물의 분석)

  • Chae, Hee-Nam;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.332-340
    • /
    • 1998
  • Tridentate Schiff base ligands, $SIPH_2$, $SIPCH_2$, $HNIPH_2$, and $HNIPCH_2$ were prepared by the reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. Ni(II) complexes of those ligands were synthesized. The structures and properties of ligands and their complexes were studied by elemental analysis, $^1H$-NMR, IR, UV-visible spectra, and thermogravimetric analysis. The mole ratio of Schiff base to the metal of complexes was found to be 1:1. Ni(II) complexes were contemplated to be hexa-coordinated octahedral configuration containing three water molecules. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as supporting electrolyte was investigated by cyclic voltammetry and differential pulse voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Ni(II) complexes were quasi-reversible and diffusion-controlled as one electron by one step process Ni(II)/Ni(I). The reduction potentials of the Ni(II) complexes shifted in the positive direction in the order [$Ni(II)(HNIP)(H_2O)_3$]>[$Ni(II)(SIP)(H_2O)_3$]>[$Ni(II)(SIPC)(H_2O)_3$]>[$Ni(II)(HNIPC)(H_2O)_3$] and their dependence on ligands were not so high. Consequently the [$Ni(II)(HNIPC)(H_2O)_3$] complex among the synthesized Ni(II) complexes was found to be most stable in the DMSO solution.

  • PDF

Synthesis and Characterization of Schiff Base-Cu(II) Complexes Derived from 2-Hydroxy-1-Naphthaldehyde and Aliphatic Diamines

  • 정병구;임채령;채희남;조기형;남계춘;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.688-693
    • /
    • 1996
  • Tetradentate Schiff base ligands derived from 2-hydroxy-1-naphthaldehyde and aliphatic diamine have been synthesized. Cu(Ⅱ) complexes of Schiff base ligands have been synthesized from the free ligands and copper acetate. The mole ratio of ligand to copper was identified to be 1:1 by the result of elemental analysis and Cu(Ⅱ) complexes were in a four-coordinated configuration. The electrochemical redox process of Cu(Ⅱ) complexes in a DMF solution has been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry, and controlled potential coulometry. The redox process of Cu(Ⅱ) complexes is one electron transfer process in quasi-reversible and diffusion-controlled reaction. The electrochemical redox potentials and the kinetic parameters of Cu(Ⅱ) complexes are affected by the chelate ring of Schiff base ligands.

Development of Schiff Base Column and Glow Discharge Detector for HPLC : Preliminary Study I (HPLC용 Schiff Base 컬럼과 Glow Discharge 검출기의 개발에 관한 기초연구 I)

  • Kang, Mi-Ra;Kim, Eun-Soo;Shin, Jung-Sook;Park, Hyun-Kook;Yang, Jung-Sung;Lee, Sang C.
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.265-272
    • /
    • 1995
  • Schiff base ligand columns and glow discharge detector have been developed for the trace analysis of metal ions desolved in water. Various types of hydrazide Schiff base ligands have been used and, additionally, they were examined as a filling material of a HPLC column. The hydrazide Schiff base ligands used were N, N'-oxalybis(salicylaldehydrazone) (OBSH), N, N'-malonylbis(salicylaldehydrazone) (MBSH), and N, N'-succinylbis(salicylaldehydrazone) (SBSH). A mixture of Schiff base ligand and poly(styrene divinylbenzene) was examined and it showed a smooth flow of solution. The OBSH-polymer column demonstrated different effluent factors for different metal ions. Metal ions in eluates were detected by Hollow Cathode Glow Discharge-Atomic Emission Spectrometry(HCGD-AES). HCGD-AES showed good sensitivity and selectivity. This is only the preliminary results of new OBSH-polymer column and glow discharge detector.

  • PDF

Stability Constants for Co(II) and Zn(II) of Multidentate N,O-Schiff Base Ligands in Dioxane-Water Mixtures (물-디옥산 혼합용매에서 여러자리 산소-질소계 Schiff 염기리간드와 코발트(II) 및 아연(II)이온의 착물 안정도상수)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Lee, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.145-149
    • /
    • 1998
  • Stability constants for the complexes of multidentate N,O-Schiff base ligands (bis-(salicylaldehyde)ethylendiamine(SED), bis-(salicylaldehyde)propylendiamine(SPD), bis-(salicylaldehyde)diethylenetriamine(SDT), bis-(salicylaldehyde)triethylenetetraamine(STT), and bis-(salicylaldehyde)tetraethylenepentaamine(STP) with Co(II) and Zn(II) were determined by a potentiometric method in a 70% dioxane-30% water mixture and ethanol, respectively. Stability constants for the complexes increased in the order of SPD

  • PDF

Synthesis of Tridentate-Schiff Base Co(II) Complexes and Their Electrochemical Properties (세자리 Schiff Base Co(Ⅱ) 착물의 합성과 전기화학적 성질)

  • Chae, Hui Nam;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.422-431
    • /
    • 1998
  • Tridentate Schiff base ligands such as $SIPH_2,\;SIPCH_2,\;HNIPH_2,\;and\; HNIPCH_2$ were prepared by the reaction of salicylaldehyde and 2-hydroxy-l-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. The structures and properties of ligands and their Co(II) complexes were investigated by elemental analysis, $^1H$NMR, IR, UV-visible spectra, and thermogravimetric analysis. The molar ratio of Schiff base to the metal of complexes was found to be 1:1. Co(II) complexes were contemplated to be hexa-coordinated octahedral configuration containing three water molecules. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte were investigated by cyclic voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Co(II) complexes were irreversible and one electron processes by two steps in diffusion controlled reaction. The reduction potential of the Co(II) complexes was shifted to the positive direction in the order [Co(Ⅱ)$(HNIPC)(H_2O)_3$]>[Co(Ⅱ)$(HNIP)(H_2O)_3$]>[Co(II)$(SIPC)(H_2O)_3$]>[Co(Ⅱ)$(SIP)(H_2O)_3], and their dependence on ligands were not so high.

  • PDF

Synthesis of Transition Metal Cu(II) Complexes and Their Electrochemical Properties (Cu(II) 전이금속 착물의 합성과 전기화학적 성질에 관한 연구)

  • Chae, Hee-nam;Choi, Yong-kook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.719-725
    • /
    • 1998
  • Tridentate Schiff base ligands were prepared by the reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. And then Cu(II) complexes of those ligands were synthesized. The structures and properties of ligands and their complexes were studied by elemental analysis, $^1H$-NMR, IR, UV-visible spectra, and thermogravimetric analysis. The mole ratio of Schiff base to the metal of complexes was found to be 1:1. Cu(II) complexes were contemplated to be four-coordinated square planar configuration containing one water molecule. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte was investigated by cyclic voltammetry and differential pulse voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Cu(II) complexes was quasi-reversible and diffusion-controlled as one electron by one step process Cu(II)/Cu(I). The reduction potentials of the Cu(II) complexes shifted in the positive direction in the order of [Cu(II)(HNIPC)($H_2O$)]>[Cu(II)(HNIP)($H_2O$)]>[Cu(II)(SIP)($H_2O$)]>[Cu(II)(SIPC)($H_2O$)].

  • PDF

Synthesis and Electrochemical Studies of Ni(Ⅱ) Complexes with Tetradentate Schiff Base Ligands

  • 정병구;임채평;국성근;조기형;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.173-179
    • /
    • 1996
  • A series of tetradentate Schiff base ligands; [1,2-bis(naphthylideneimino)ethane, 1,3-bis(naphthylideneimino)propane, 1,4-bis(naphthylideneimino)butane, and 1,5-bis(naphthylideneimino)pentane] and their Ni(Ⅱ) complexes have been synthesized. The properties of these ligands and their Ni(Ⅱ) complexes have been characterized by elemental analysis, IR, NMR, UV-vis spectra, molar conductance, and thermogravimetric analysis. The mole ratio of Schiff base to Ni(Ⅱ) metal was found to be 1:1. The electrochemical redox process of the ligands and their Ni(Ⅱ) complexes in DMF and DMSO solution containing 0.1 M tetraethyl ammonium perchlorate (TEAP) as a supporting electrolyte have been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry, and controlled potential coulometry at glassy carbon electrode. The redox process of the ligands was highly irreversible, whereas redox process of Ni(Ⅱ) complexes were observed as one electron transfer process in quasi-reversible and diffusion-controlled reaction. The electrochemical redox potentials of the Ni(Ⅱ) complexes were affected by the chelate ring size of ligands. The diffusion coefficients of Ni(Ⅱ) complexes containing 0.1 M TEAP in DMSO solution were determined to be 5.7-6.9 × 10-6 cm2/sec. Also the exchange rate constants were determined to be 1.8-9.5 × 10-2 cm2/sec. These values were affected by the chelate ring size of ligands.

Synthesis and Electrochemical Studies of Cu(II) and Ni(II) Complexes with Tetradentate Schiff Base Ligands

  • 조기형;정병구;김정희;전승원;임채평;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.850-856
    • /
    • 1997
  • A series of tetradentate Schiff-base ligands; 1,3-bis(salicylideneimino) propane, 1,4-bis(salicylideneimino)butane, and 1,5-bis(salicylideneimino)pentane, and their Cu(Ⅱ) and Ni(Ⅱ) complexes have been synthesized. The properties of ligands and complexes have been characterized by elemental analysis, IR, NMR, UV-Vis spectra, molar conductance, and thermogravimetric anaylsis. The mole ratio of Schiff base to metal at complexes was found to be 1 : 1. All complexes were four-coordinated configuration and non-ionic compound. The electrochemical redox processes of the ligands and their complexes in DMF solution containing 0.1 M TEAP as supporting electrolyte have been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry at glassy carbon electrode, and by controlled potential coulometry at platinum gauze electrode. The redox process of the ligands was highly irreversible, whereas redox process of Cu(Ⅱ) and Ni(Ⅱ) complexes was observed as one electron transfer process of quasi-reversible and diffusion-controlled reaction. Also the electrochemical redox potentials of complexes were affected by chelate ring size of ligands. The diffusion coefficients of Cu(Ⅱ) and Ni(Ⅱ) complexes in DMF solution were determined to be 4.2-6.6×10-6 cm2/sec. Also the exchange rate constants were determined to be 3.6-9.7×10-2 cm/sec.

The Effect of Electron-withdrawing Group Functionalization on Antibacterial and Catalytic Activity of Palladium(II) Complexes

  • Feng, Zhi-Qiang;Yang, Xiao-Li;Ye, Yuan-Feng;Hao, Lin-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1121-1127
    • /
    • 2014
  • The design, synthesis, and structural characterization of two new palladium complexes based on Schiff base ligands is reported; $[Pd(L1)_2]$ (1) and $[Pd(L2)_2]$ (2), [HL1 = 2-((E)-(2,6-diethylphenylimino)methyl)-4,6-dibromophenol, L2 = (E)-N-benzylidene-2,6-diethylbenzenamine], which are obtained by functionalizing Schiff base ligands with or without electron-withdrawing groups. Both compounds are mononuclear structures. Comparisons are made to the compounds 1 and 2 to analyze and understand the effect of electron-withdrawing groups. Antibacterial activity studies indicate the electron-withdrawing groups on Schiff base ligands enhance antibacterial activity. Catalytic activity, however, is reduced due to the enhanced steric-hindrance of the electron-withdrawing groups. Electronic absorption and emission properties of HL1, L2, 1 and 2 are also reported.