• Title/Summary/Keyword: Schema Theorem

Search Result 11, Processing Time 0.023 seconds

Co-Evolutionary Algorithm for the Intelligent System

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1013-1016
    • /
    • 1999
  • Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based optimization method based on the principle of the Darwinian natural selection. The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. Although GA does well in many applications as an optimization method, still it does not guarantee the convergence to a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve. In this paper we propose an extended schema theorem associated with a schema co-evolutionary algorithm(SCEA), which explains why the co-evolutionary algorithm works better than SGA. The experimental results show that the SCEA works well in optimization problems including deceptive functions.

  • PDF

Schema Analysis on Co-Evolutionary Algorithm (공진화에 있어서 스키마 해석)

  • Byung, Jun-Hyo;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.77-80
    • /
    • 1998
  • The theoretical foundations of simple genetic algorithm(SGA) are the Schema Theorem and the Building Block Hypothesis. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and cooperate each other. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. Also the experimental results show a co-evolutionary algorithm works well in optimization problems.

  • PDF

Co-Evolutionary Algorithm and Extended Schema Theorem

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.95-110
    • /
    • 1998
  • Evolutionary Algorithms (EAs) are population-based optimization methods based on the principle of Darwinian natural selection. The representative methodology in EAs is genetic algorithm (GA) proposed by J. H. Holland, and the theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the meaning of these foundational concepts, simple genetic algorithm (SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithm. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. And predator-prey co-evolution and symbiotic co-evolution, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. And the experimental results show a co-evolutionary algorithm works well in optimization problems even though in deceptive functions.

  • PDF

Co-Evolutionary Algorithms for the Realization of the Intelligent Systems

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.115-125
    • /
    • 1999
  • Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based optimization method based on the principle of the Darwinian natural selection. The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. Although GA does well in many applications as an optimization method, still it does not guarantee the convergence to a global optimum in some problems. In designing intelligent systems, specially, since there is no deterministic solution, a heuristic trial-and error procedure is usually used to determine the systems' parameters. As an alternative scheme, therefore, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve. In this paper we review the existing co-evolutionary algorithms and propose co-evolutionary schemes designing intelligent systems according to the relation between the system's components.

  • PDF

Cooperative Behavior of Distributed Autonomous Robotic Systems Based on Schema Co-Evolutionary Algorithm

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.185-190
    • /
    • 2002
  • In distributed autonomous robotic systems (DARS), each robot must behave by itself according to its states ad environments, and if necessary, must cooperate with other robots in order to carry out their given tasks. Its most significant merit is that they determine their behavior independently, and cooperate with other robots in order to perform the given tasks. Especially, in DARS, it is essential for each robot to have evolution ability in order to increase the performance of system. In this paper, a schema co-evolutionary algorithm is proposed for the evolution of collective autonomous mobile robots. Each robot exchanges the information, chromosome used in this algorithm, through communication with other robots. Each robot diffuses its chromosome to two or more robots, receives other robot's chromosome and creates new species. Therefore if one robot receives another robot's chromosome, the robot creates new chromosome. We verify the effectiveness of the proposed algorithm by applying it to cooperative search problem.

A Performance Comparison between GA and Schema Co-Evolutionary Algorithm (스키마 공진화 알고리즘과 GA의 성능 비교)

  • 전호병;전효병;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.134-137
    • /
    • 2000
  • Genetic algorithms(GAs) have been widely used as a method to solve optimization problems. This is because GAs have simple and elegant tools with reproduction, crossover, and mutation to rapidly discover good solutions for difficult high-dimensional problems. They, however, do not guarantee the convergence of global optima in GA-hard problems such as deceptive problems. Therefore we proposed a Schema Co-Evolutionary Algorithm(SCEA) and derived extended schema 76988theorem from it. Using co-evolution between the first population made up of the candidates of solution and the second population consisting of a set of schemata, the SCEA works better and converges on global optima more rapidly than GAs. In this paper, we show advantages and efficiency of the SCEA by applying it to some problems.

  • PDF

Behavior Control of Autonomous Mobile Robot using Schema Co-evolution (스키마 공진화 기법을 이용한 자율이동로봇의 행동제어)

  • Sun, Joung-Chi;Byung, Jun-Hyo;Bo, Sim-Kwee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.123-126
    • /
    • 1998
  • The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the Meaning of these foundational concepts, simple genetic algorithm(SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithms. In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output variables are going to increase. So we propose a co-evolutionary method finding optimal fuzzy rules. Our algorithm is that after constructing two population groups m de up of rule vase and its schema, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying the proposed method to a path planning problem of autonomous mobile robots when moving objects exist, we show the validity of the proposed method.

  • PDF

Schema Analysis on Co-Evolutionary Algorithm (공진화 알고리즘에 있어서 스키마 해석)

  • Kwee-Bo Sim;Hyo-Byung Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.616-623
    • /
    • 1998
  • Holland가 제안한 단순 유전자 알고리즘은 다원의 자연선택설을 기본으로 한 군 기반의 최적화 방법으로서, 이론적 기반으로는 스키마 정리와 빌딩블록 가설이 있다. 단순 유전자 알고리즘(SGA)이 이러한 이론적 기반에도 불구하고 여전히 일부 문제에 있어서 최적해로의 수렴을 보장하지 못하고 있다. 따라서 최근에 두 개의 집단이 서로 상호작용을 하며 진화하는 공진화 방법에 의해 이러한 문제를 해결하려고 하는데 많은 관심이 모아지고 있다. 본 논문에서는 이러한 공진화 방법이 잘 동작하는지에 대한 이론적 기반으로 확장 스키마 정리를 제안하고, SGA에서는 해결하지 못하는 최적화 문제, 예를 들면 deceptive function,에서 SGA와 공진화에 의한 방법을 비교함으로써 확장된 스키마 정리의 유효성을 확인한다.

  • PDF

A Proof Mechanism for Knowledge and Belief Based on Deduction Model (추론모형에 기초한 믿음과 지식의 증명)

  • 김영훈;한상기
    • Korean Journal of Cognitive Science
    • /
    • v.1 no.2
    • /
    • pp.347-360
    • /
    • 1989
  • Retearches on epistemology for artificial intelligence have started quite recently.Recently,Konolige made a contribution to epistemology by proposing a deduction model based on an efficieit modal logic for a proof mechanism for belief.In this thesis,a unified and generalized proof mechanism for the epistemic logic using a formal system called a View is pesented.In addition,the algorithm to adapt the theorem prover according to the given rule schema,which charncterizes the deduction model of the epistemic logic,is constructed. With this algorlthm,multiple agents having different rule schemas can co-exist in the proposed system. The soundness and completeness of the proposed proof mechanism is proved and a simple theorem prover is implemented to demonstrate the usefulness and practilcality.

Qi-Flavor Theory' Meaning, Nutrient Content and Anti-Oxidative Activity of Oriental Medicinal Materials with Clear Heat Effect (청열(淸熱)효능을 지닌 약선재료의 기미론(氣味論)적 의미와 식품학적 특성)

  • Park, Sung-Hye
    • Journal of the Korean Society of Food Culture
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • Traditionally, food and medicines are considered as having common roots. That is, their energies share the same source (藥食同源), which has created a unique food culture, and nurtured a unique academic area of dietary medicine (藥膳食料學). This study aimed to develop a desirable dietary life-style based on the oriental dietary medicine theorem originated from the schema of four qi as well as five flavors of foods (四氣五味), originated from the yin-yang and five phase theory based on a clear understanding of a modern point of view, and experimental analysis of nutrients and dietary effects of clear heat effect materials. This study can promote more healthy life-styles and prevent adult diseases by following oriental dietary medicine theory. We should develop a Yack-sun theory and dietary culture that is suitable for physical and genetic health.