• Title/Summary/Keyword: Scheduling Optimization

Search Result 452, Processing Time 0.025 seconds

Reaction coefficient assessment and rechlorination optimization for chlorine residual equalization in water distribution networks (상수도 잔류염소농도 균등화를 위한 반응계수 추정 및 염소 재투입 최적화)

  • Jeong, Gimoon;Kang, Doosun;Hwang, Taemun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1197-1210
    • /
    • 2022
  • Recently, users' complaints on drinking water quality are increasing according to emerging interest in the drinking water service issues such as pipe aging and various water quality accidents. In the case of drinking water quality complaints, not only the water pollution but also the inconvenience on the chlorine residual for disinfection are included, thus various efforts, such as rechlorination treatment, are being attempted in order to keep the chlorine concentration supplied evenly. In this research, for a more accurate water quality simulation of water distribution network, the water quality reaction coefficients were estimated, and an optimization method of chlorination/ rechlorination scheduling was proposed consideirng satisfaction of water quality standards and chlorine residual equalization. The proposed method was applied to a large-scale real water network, and various chlorination schemes were comparatively analyzed through the grid search algorithm and optimized based on the suitability and uniformity of supplied chlorine residual concentration.

Optimal Berth and Crane Scheduling Using Constraint Programming and Heuristic Repair (제약만족 및 휴리스틱 교정기법을 이용한 최적 선석 및 크레인 일정계획)

  • 백영수;류광렬;박영만;김갑환
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.151-157
    • /
    • 1999
  • 선석계획 및 크레인 일정계획은 컨테이너 터미널에서 입항하는 선박들의 빈번한 변동상황에 능동적으로 대처하고 유연하면서도 신속한 의사결정이 가능하도록 여러 명의 전문가가 장기적인 계획을 바탕으로 지속적으로 수정 보완해 나가는 방법으로 이루어지고 있다. 본 논문에서는 선사 및 컨테이너 터미널에서 수시로 변경되는 다양한 요구조건을 수용하는 최적의 선석 및 크레인 일정계획 수립을 위하여 제약만족기법과 휴리스틱 교정(Heuristic Repair)기법을 이용하였다. 선석계획 및 크레인 일정 계획문제는 기본적으로 제약조건 만족문제로 정형화할 수 있지만 선박의 접안위치를 결정하는 문제는 목적함수를 가지는 최적화문제이다. 따라서 이 문제는 제약조건 만족문제와 최적화문제가 혼합된 문제(CSOP, Constraint Satisfaction and Optimization Problem)로 볼 수 있다. 이러한 문제를 해결하기 위해서 각 선박의 최적 전압위치를 찾고 최우선 순위 선박의 최적 접안위치로부터 주어진 모든 제약조건을 만족하는 해를 찾는 탐색기법을 활용했고 휴리스틱 교정기법을 사용해서 제약만족기법에서 찾은 해를 교정했다. 우선순위가 가장 높은 선박부터 탐색을 하기 위해 Variable Ordering 기법을 사용했고 그 선박의 최적 접안위치부터 탐색을 해 나가는 Value Ordering 기법을 사용하였다. 실제 부산 신선대 컨테이너 터미널의 선석계획자료를 사용해서 실험을 하였다.

  • PDF

Hybrid CSA optimization with seasonal RVR in traffic flow forecasting

  • Shen, Zhangguo;Wang, Wanliang;Shen, Qing;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4887-4907
    • /
    • 2017
  • Accurate traffic flow forecasting is critical to the development and implementation of city intelligent transportation systems. Therefore, it is one of the most important components in the research of urban traffic scheduling. However, traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during workday peak periods, and a lot of research has shown that traffic flow data reveals a seasonal trend. This paper proposes a new traffic flow forecasting model that combines seasonal relevance vector regression with the hybrid chaotic simulated annealing method (SRVRCSA). Additionally, a numerical example of traffic flow data from The Transportation Data Research Laboratory is used to elucidate the forecasting performance of the proposed SRVRCSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal auto regressive integrated moving average (SARIMA), the double seasonal Holt-Winters exponential smoothing (DSHWES), and the relevance vector regression with hybrid Chaotic Simulated Annealing method (RVRCSA) models. The forecasting performance of RVRCSA with different kernel functions is also studied.

Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM

  • Wang, Jidong;Ran, Ran;Song, Zhilin;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 2017
  • Considering the volatility, intermittent and random of photovoltaic (PV) generation systems, accurate forecasting of PV power output is important for the grid scheduling and energy management. In order to improve the accuracy of short-term power forecasting of PV systems, this paper proposes a prediction model based on environmental factors and support vector machine optimized by genetic algorithm (GA-SVM). In order to improve the prediction accuracy of this model, weather conditions are divided into three types, and the gray correlation coefficient algorithm is used to find out a similar day of the predicted day. To avoid parameters optimization into local optima, this paper uses genetic algorithm to optimize SVM parameters. Example verification shows that the prediction accuracy in three types of weather will remain at between 10% -15% and the short-term PV power forecasting model proposed is effective and promising.

Image Completion using Belief Propagation Based on Planar Priorities

  • Xiao, Mang;Li, Guangyao;Jiang, Yinyu;Xie, Li;He, Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4405-4418
    • /
    • 2016
  • Automatic image completion techniques have difficulty processing images in which the target region has multiple planes or is non-facade. Here, we propose a new image completion method that uses belief propagation based on planar priorities. We first calculate planar information, which includes planar projection parameters, plane segments, and repetitive regularity extractions within the plane. Next, we convert this planar information into planar guide knowledge using the prior probabilities of patch transforms and offsets. Using the energy of the discrete Markov Random Field (MRF), we then define an objective function for image completion that uses the planar guide knowledge. Finally, in order to effectively optimize the MRF, we propose a new optimization scheme, termed Planar Priority-belief propagation that includes message-scheduling-based planar priority and dynamic label cropping. The results of experiment show that our approach exhibits advanced performance compared with existing approaches.

Robust Parameter Design via Taguchi's Approach and Neural Network

  • Tsai, Jeh-Hsin;Lu, Iuan-Yuan
    • International Journal of Quality Innovation
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • The parameter design is the most emphasized measure by researchers for a new products development. It is critical for makers to achieve simultaneously in both the time-to-market production and the quality enhancement. However, there are difficulties in practical application, such as (1) complexity and nonlinear relationships co-existed among the system's inputs, outputs and control parameters, (2) interactions occurred among parameters, (3) where the adjustment factors of Taguchi's two-phase optimization procedure cannot be sure to exist in practice, and (4) for some reasons, the data became lost or were never available. For these incomplete data, the Taguchi methods cannot treat them well. Neural networks have a learning capability of fault tolerance and model free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful fields include diagnostics, robotics, scheduling, decision-making, prediction, etc. This research is a case study of spherical annealing model. In the beginning, an original model is used to pre-fix a model of parameter design. Then neural networks are introduced to achieve another model. Study results showed both of them could perform the highest spherical level of quality.

Communication Optimization for Energy-Efficient Networks-on-Chips (저전력 네트워크-온-칩을 위한 통신 최적화 기법)

  • Shin, Dong-Kun;Kim, Ji-Hong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.3
    • /
    • pp.120-132
    • /
    • 2008
  • Networks-on-Chip (NoC) is emerging as a practical development platform for future systems-on-chip products. We propose an energy-efficient static algorithm which optimizes the energy consumption of task communications in NoCs with voltage scalable links. In order to find optimal link speeds, the proposed algorithm (based on a genetic formulation) globally explores the design space of NoC-based systems, including network topology, task assignment, tile mapping, routing path allocation, task scheduling and link speed assignment. Experimental results show that the proposed design technique can reduce energy consumption by 28% on average compared with existing techniques.

Vehicle Lateral Stability Management Using Gain-Scheduled Robust Control

  • You, Seung-Han;Jo, Joon-Sang;Yoo, Seung-Jin;Hahn, Jin-Oh;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1898-1913
    • /
    • 2006
  • This paper deals with the design of a yaw rate controller based on gain-scheduled H$\infty$ optimal control, which is intended to maintain the lateral stability of a vehicle. Uncertain factors such as vehicle mass and cornering stiffness in the vehicle yaw rate dynamics naturally call for the robustness of the feedback controller and thus H$\infty$ optimization technique is applied to synthesize a controller with guaranteed robust stability and performance against the model uncertainty. In the implementation stage, the feed-forward yaw moment by driver's steer input is estimated by the disturbance observer in order to determine the accurate compensatory moment. Finally, HILS results indicate that the proposed yaw rate controller can satisfactorily improve the lateral stability of an automobile.

A Probabilistic Filtering Technique for Improving the Efficiency of Local Search (국지적 탐색의 효율향상을 위한 확률적 여과 기법)

  • Kang, Byoung-Ho;Ryu, Kwang-Ryel
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.246-254
    • /
    • 2007
  • Local search algorithms start from a certain candidate solution and probe its neighborhood to find ones with improved quality. This paper proposes a method of probabilistically filtering out bad-looking neighbors based on a simple low-cost preliminary evaluation heuristics. The probabilistic filtering enables us to save time wasted on fully evaluating those solutions that will eventually be trashed, and thus improves the search efficiency by allowing us to spend more time on examining better looking solutions. Experiments with two large-scaled real-world problems, which are a traffic signal control problem in traffic network and a load balancing problem in production scheduling, have shown that the proposed method finds better quality solutions, given the same amount of CPU time.

An Optimal Schedule Algorithm Trade-Off Among Lifetime, Sink Aggregated Information and Sample Cycle for Wireless Sensor Networks

  • Zhang, Jinhuan;Long, Jun;Liu, Anfeng;Zhao, Guihu
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.227-237
    • /
    • 2016
  • Data collection is a key function for wireless sensor networks. There has been numerous data collection scheduling algorithms, but they fail to consider the deep and complex relationship among network lifetime, sink aggregated information and sample cycle for wireless sensor networks. This paper gives the upper bound on the sample period under the given network topology. An optimal schedule algorithm focusing on aggregated information named OSFAI is proposed. In the schedule algorithm, the nodes in hotspots would hold on transmission and accumulate their data before sending them to sink at once. This could realize the dual goals of improving the network lifetime and increasing the amount of information aggregated to sink. We formulate the optimization problem as to achieve trade-off among sample cycle, sink aggregated information and network lifetime by controlling the sample cycle. The results of simulation on the random generated wireless sensor networks show that when choosing the optimized sample cycle, the sink aggregated information quantity can be increased by 30.5%, and the network lifetime can be increased by 27.78%.