• Title/Summary/Keyword: Scene text detection

Search Result 38, Processing Time 0.025 seconds

A Gaussian Mixture Model for Binarization of Natural Scene Text

  • Tran, Anh Khoa;Lee, Gueesang
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.14-19
    • /
    • 2013
  • Recently, due to the increase of the use of scanned images, the text segmentation techniques, which play critical role to optimize the quality of the scanned images, are required to be updated and advanced. In this study, an algorithm has been developed based on the modification of Gaussian mixture model (GMM) by integrating the calculation of Gaussian detection gradient and the estimation of the number clusters. The experimental results show an efficient method for text segmentation in natural scenes such as storefronts, street signs, scanned journals and newspapers at different size, shape or color of texts in condition of lighting changes and complex background. These indicate that our model algorithm and research approach can address various issues, which are still limitations of other senior algorithms and methods.

  • PDF

A new approach for overlay text detection from complex video scene (새로운 비디오 자막 영역 검출 기법)

  • Kim, Won-Jun;Kim, Chang-Ick
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.544-553
    • /
    • 2008
  • With the development of video editing technology, there are growing uses of overlay text inserted into video contents to provide viewers with better visual understanding. Since the content of the scene or the editor's intention can be well represented by using inserted text, it is useful for video information retrieval and indexing. Most of the previous approaches are based on low-level features, such as edge, color, and texture information. However, existing methods experience difficulties in handling texts with various contrasts or inserted in a complex background. In this paper, we propose a novel framework to localize the overlay text in a video scene. Based on our observation that there exist transient colors between inserted text and its adjacent background a transition map is generated. Then candidate regions are extracted by using the transition map and overlay text is finally determined based on the density of state in each candidate. The proposed method is robust to color, size, position, style, and contrast of overlay text. It is also language free. Text region update between frames is also exploited to reduce the processing time. Experiments are performed on diverse videos to confirm the efficiency of the proposed method.

Text Region Extraction Using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에세 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1167-1174
    • /
    • 2006
  • Text region detection from a natural scene is useful in many applications such as vehicle license plate recognition. Therefore, in this paper, we propose a text region extraction method using pattern histogram of character-edge maps. We create 16 kinds of edge maps from the extracted edges and then, we create the 8 kinds of edge maps which compound 16 kinds of edge maps, and have a character feature. We extract a candidate of text regions using the 8 kinds of character-edge maps. The verification about candidate of text region used pattern histogram of character-edge maps and structural features of text region. Experimental results show that the proposed method extracts a text regions composed of complex background, various font sizes and font colors effectively.

  • PDF

An Ensemble Classifier Based Method to Select Optimal Image Features for License Plate Recognition (차량 번호판 인식을 위한 앙상블 학습기 기반의 최적 특징 선택 방법)

  • Jo, Jae-Ho;Kang, Dong-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.142-149
    • /
    • 2016
  • This paper proposes a method to detect LP(License Plate) of vehicles in indoor and outdoor parking lots. In restricted environment, there are many conventional methods for detecting LP. But, it is difficult to detect LP in natural and complex scenes with background clutters because several patterns similar with text or LP always exist in complicated backgrounds. To verify the performance of LP text detection in natural images, we apply MB-LGP feature by combining with ensemble machine learning algorithm in purpose of selecting optimal features of small number in huge pool. The feature selection is performed by adaptive boosting algorithm that shows great performance in minimum false positive detection ratio and in computing time when combined with cascade approach. MSER is used to provide initial text regions of vehicle LP. Throughout the experiment using real images, the proposed method functions robustly extracting LP in natural scene as well as the controlled environment.

Improved Text Recognition using Analysis of Illumination Component in Color Images (컬러 영상의 조명성분 분석을 통한 문자인식 성능 향상)

  • Choi, Mi-Young;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.131-136
    • /
    • 2007
  • This paper proposes a new approach to eliminate the reflectance component for the detection of text in color images. Color images, printed by color printing technology, normally have an illumination component as well as a reflectance component. It is well known that a reflectance component usually obstructs the task of detecting and recognizing objects like texts in the scene, since it blurs out an overall image. We have developed an approach that efficiently removes reflectance components while preserving illumination components. We decided whether an input image hits Normal or Polarized for determining the light environment, using the histogram which consisted of a red component. We were able to go ahead through the ability to extract by reducing the blur phenomenon of text by light because reflection component by an illumination change and removed it and extracted text. The experimental results have shown a superior performance even when an image has a complex background. Text detection and recognition performance is influenced by changing the illumination condition. Our method is robust to the images with different illumination conditions.

  • PDF

Hangul Text Detection using Text Corner Edge Feature Analysis in Natural Scene Images (자연영상에서 코너 에지 특징 분석방법을 이용한 한글 텍스트 검출기법에 관한 연구)

  • Park Jong-Cheon;Kwon Kyo-Hyun;Jun Byung-Min
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.379-383
    • /
    • 2005
  • 본 연구에서는 자연 이미지에서 한글 텍스트가 갖고 있는 에지 코너 특징을 이용한 한글 텍스트 검출방법을 제안한다. 자연영상으로부터 에지를 검출하고, 검출된 에지를 20종류의 에지 구조 성분을 갖는 에지 맵을 생성한다. 생성된 에지 맵에서 한글 텍스트 특징 갖는 특징들을 조합하여 모두 8가지의 텍스트 영역 후보 특징을 추출한다. 추출된 텍스트 영역의 특징을 수평 및 수직방향으로 검사하여 텍스트의 시작 라인과 끝라인을 검출하여 텍스트 영역의 수평좌표를 구한다. 추출된 텍스트 후보 영역에서 최종적으로 텍스트 영역을 결정한다. 제안한 방법은 다양한 종류의 자연 이미지에서 텍스트 영역을 검출에서 좋은 성능을 나타냈다.

  • PDF

Scene Text Detection Using Color-Based Binarization and Text Region Verification Using Support Vector Machine (색기반 이진화를 이용한 장면 텍스트 추출과 써포트 벡터머신을 이용한 텍스트 영역 검증)

  • Jang, Dae-Geun;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.161-163
    • /
    • 2007
  • 기존의 텍스트 추출을 위한 이진화 방법은 입력 이미지를 명도 이미지로 변환한 뒤 이진화 하는 방법을 사용하였다. 이러한 방법은 칼라 이미지에서는 극명히 구분되는 색이라 할지라도 명도 이미지로 변환하는 과정에서 같은 밝기를 같게 되는 경우(예를 들어, 배경은 붉은색, 텍스트는 초록색), 텍스트를 추출하는 데 어려움이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 입력 이미지를 R, G, B로 분리하고 각각을 이진화 하여 텍스트를 추출하고 다해상도 웨이블릿(Wavelet) 변환을 이용하여 텍스트의 획 특징을 추출하여 추출된 특징들을 SVM(Support Vector Machine) 분류기로 검증하여 최종 텍스트 영역을 확정한다. 제안한 방법을 적용함으로써 명도 정보만으로는 추출하기 어려웠던 텍스트 영역을 효과적으로 추출하고 텍스트와 구별하기 어려운 영역을 획수준으로 검증할 수 있었다.

  • PDF

A Study on Extraction of text region using shape analysis of text in natural scene image (자연영상에서 문자의 형태 분석을 이용한 문자영역 추출에 관한 연구)

  • Yang, Jae-Ho;Han, Hyun-Ho;Kim, Ki-Bong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we propose a method of character detection by analyzing image enhancement and character type to detect characters in natural images that can be acquired in everyday life. The proposed method emphasizes the boundaries of the object part using the unsharp mask in order to improve the detection rate of the area to be recognized as a character in a natural image. By using the boundary of the enhanced object, the character candidate region of the image is detected using Maximal Stable Extermal Regions (MSER). In order to detect the region to be judged as a real character in the detected character candidate region, the shape of each region is analyzed and the non-character region other than the region having the character characteristic is removed to increase the detection rate of the actual character region. In order to compare the objective test of this paper, we compare the detection rate and the accuracy of the character region with the existing methods. Experimental results show that the proposed method improves the detection rate and accuracy of the character region over the existing character detection method.

Image Based Human Action Recognition System to Support the Blind (시각장애인 보조를 위한 영상기반 휴먼 행동 인식 시스템)

  • Ko, ByoungChul;Hwang, Mincheol;Nam, Jae-Yeal
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.138-143
    • /
    • 2015
  • In this paper we develop a novel human action recognition system based on communication between an ear-mounted Bluetooth camera and an action recognition server to aid scene recognition for the blind. First, if the blind capture an image of a specific location using the ear-mounted camera, the captured image is transmitted to the recognition server using a smartphone that is synchronized with the camera. The recognition server sequentially performs human detection, object detection and action recognition by analyzing human poses. The recognized action information is retransmitted to the smartphone and the user can hear the action information through the text-to-speech (TTS). Experimental results using the proposed system showed a 60.7% action recognition performance on the test data captured in indoor and outdoor environments.

Text Region Detection using Edge and Local Minima/Maxima Transformation From Natural Scene Images (에지 및 국부 최소/최대 변환을 이용한 자연이미지로부터 텍스트 영역검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.257-259
    • /
    • 2008
  • 자연이미지에 내포된 텍스트는 많은 정보를 제공함으로 이를 효과적으로 검출하여 다양한 응용분야에 활용될 수 있다. 본 논문에서는 텍스트 영역의 에지 특징과 국부 최소/최대 변환을 이용하여 자연이미지로부터 텍스트 영역 검출 방법을 제안한다. 에지 검출은 캐니-에지 검출기로 추출하고, 국부 최소/최대 변환을 이용하여 텍스트 영역의 연결성분을 추출한다. 각각 추출된 에지 및 연결성분으로부터 텍스트 영역 후보를 검출하고, 각각의 결과를 결합하여 최종적인 텍스트 후보 영역을 검출하고, 후보 텍스트 영역에 대한 검증을 수행함으로서 최종적인 텍스트 영역을 검출한다. 제안한 방법은 다양한 종류의 자연이미지를 대상으로 실험한 결과, 에지 및 연결성분의 두 가지 특징을 결합함으로서 자연이미지에 존재하는 다양한 형태의 텍스트 영역을 효과적으로 검출하였다.

  • PDF