Improved Text Recognition using Analysis of Illumination Component in Color Images

컬러 영상의 조명성분 분석을 통한 문자인식 성능 향상

  • Published : 2007.07.31

Abstract

This paper proposes a new approach to eliminate the reflectance component for the detection of text in color images. Color images, printed by color printing technology, normally have an illumination component as well as a reflectance component. It is well known that a reflectance component usually obstructs the task of detecting and recognizing objects like texts in the scene, since it blurs out an overall image. We have developed an approach that efficiently removes reflectance components while preserving illumination components. We decided whether an input image hits Normal or Polarized for determining the light environment, using the histogram which consisted of a red component. We were able to go ahead through the ability to extract by reducing the blur phenomenon of text by light because reflection component by an illumination change and removed it and extracted text. The experimental results have shown a superior performance even when an image has a complex background. Text detection and recognition performance is influenced by changing the illumination condition. Our method is robust to the images with different illumination conditions.

본 논문에서는 컬러영상에 존재하는 문자들을 효율적으로 추출하기 위한 새로운 접근 방법을 제안한다. 빛 또는 조명성분의 영향에 의해 획득된 영상 내에 존재하는 반사성분은 문자 또는 관심객체들의 경계가 모호해 지거나 관심객체와 배경이 서로 혼합 되었을 경우, 문자추출 및 인식을 함에 있어서 오류를 포함시킬 수 있다. 따라서 영상 내에 존재하는 반사성분을 제거하기 위해 먼저. 컬러영상으로부터 Red컬러 성분에 해당하는 히스토그램에서 두개의 pick점을 검출한다. 이후 검출된 두 개의 pick점들 간의 분포를 사용하여 노말 또는 편광 영상에 해당하는지를 판별한다. 노말 영상의 경우 부가적인 처리를 거치지 않고 문자에 해당하는 영역을 검출하며, 편광 영상에 해당하는 경우 반사성분을 제거하기 위해 호모모픽필터링 방법을 적용하여 반사성분에 해당하는 영역을 제거한다. 이후 문자영역을 검출하기 위해 최적전역임계화방식을 적용하여 전경과 배경을 분리하였으며 문자영역 추출 및 인식의 성능을 향상시켰다. 널리 사용되고 있는 문자 인식기를 사용하여 제안한 방식 적용 전과 후의 인식결과를 비교하였다. 편광영상에서 제안된 방법 적용 후, 문자인식을 한 경우 인식률이 향상되었다.

Keywords