• Title/Summary/Keyword: Scenario evaluation

Search Result 645, Processing Time 0.028 seconds

Sensitivity Analysis of Depletion Parameters for Heat Load Evaluation of PWR Spent Fuel Storage Pool (경수로 사용후핵연료 저장조 열부하 평가를 위한 연소조건 인자 민감도 분석)

  • Kim, In-Young;Lee, Un-Chul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.237-245
    • /
    • 2011
  • As necessity of safety re-evaluation for spent fuel storage facility has emphasized after the Fukushima accident, accuracy improvement of heat load evaluation has become more important to acquire reliable thermal-hydraulic evaluation results. As groundwork, parametric and sensitivity analyses of various storage conditions for Kori Unit 4 spent fuel storage pool and spent fuel depletion parameters such as axial burnup effect, operation history, and specific heat are conducted using ORIGEN2 code. According to heat load evaluation and parametric sensitivity analyses, decay heat of last discharged fuel comprises maximum 80.42% of total heat load of storage facility and there is a negative correlation between effect of depletion parameters and cooling period. It is determined that specific heat is most influential parameter and operation history is secondly influential parameter. And decay heat of just discharged fuel is varied from 0.34 to 1.66 times of average value and decay heat of 1 year cooled fuel is varied from 0.55 to 1.37 times of average value in accordance with change of specific power. Namely depletion parameters can cause large variation in decay heat calculation of short-term cooled fuel. Therefore application of real operation data instead of user selection value is needed to improve evaluation accuracy. It is expected that these results could be used to improve accuracy of heat load assessment and evaluate uncertainty of calculated heat load.

A Study on the Application of EXPERT-CHOICE Technique for Selection of Optimal Decontamination Technology for Nuclear Power Plant of Decommissioning (원전 해체 시 최적 제염기술 선정을 위한 EXPERT-CHOICE 기법 적용에 대한 연구)

  • Song, Jong Soon;Shin, Seung Su;Lee, Sang Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.231-237
    • /
    • 2017
  • The present study researched and analyzed decontamination technology for decommissioning a nuclear power plant. The decision-making technique (EXPERT-CHOICE) was used to evaluate and select the optimal decontamination technology. In principle, this evaluation method is generally performed by a group of experts in the relevant field. The results of the weights were calculated by multiplying the weights with regard to each criterion and evaluation score. The evaluation scores were categorized into 3 ranges (high, medium, and low), and each range was weighted for differentiation. The level of the technology analysis was improved by additionally quantifying the weights with regard to each criterion and subdividing criteria into subcriteria. The basic assumption of the evaluation was that the weight values would decided on in an expert survey and assigned to each criterion. The evaluation criteria followed high weight for the 'High' range. Accordingly, H, M, and L were assigned weights of 10:5:1, respectively. This was based on the EXPERT-CHOICE optimal analysis. The minimum and maximum values were excluded, and the average value was used as the evaluation value for each scenario.

Design of Software Quality Evaluation Model for IoT (IoT 기반 SW 품질평가 모델)

  • Chung, Su-min;Choi, Jae-hyun;Park, Jea-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1342-1354
    • /
    • 2016
  • As Internet, and hardware technology are in rapid process, using rate and penetration rate of Internet of Things are increasing. Internet of Things is the physical objects with network which embedded with electronics, software, sensors, and network. Smart Home-kit to operate refrigerators, washing machines, light bulbs, and such internet of things by a smartphone has been realized. However, it is difficult to use a good quality of software based on IoT. It is because that the study related to quality evaluation of software based on IoT is deficient compared with increase amount of IoT devices. Software based on IoT includes mobility, transportability, real time accessibility and hardware characteristics. Therefore, it is necessary to have differentiated quality standards and quality model. Software quality evaluation model for IoT is proposed to satisfy these needs. Evaluation model is mapped by characteristics of IoT software based on ISO/IEC 25000's quality characteristics. Scenario based studies were applied to quality model for verification.

Probabilistic Reliability Based HVDC Expansion Planning of Power System Including Wind Turbine Generators (풍력발전기를 포함하는 전력계통에서의 신뢰도 기반 HVDC 확충계획)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Yoon, Yongbeum;Kim, Chan-Ki;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • New methodology for probabilistic reliability based grid expansion planning of HVDC in power system including Wind Turbine Generators(WTG) is developed in this paper. This problem is focused on scenario based optimal selection technique to decide best connection bus of new transmission lines of HVDC in view point of adequacy reliability in power system including WTG. This requires two kinds of modeling and simulation for reliability evaluation. One is how is reliability evaluation model and simulation of WTG. Another is to develop a failure model of HVDC. First, reliability evaluation of power system including WTG needs multi-state simulation methodology because of intermittent characteristics of wind speed and nonlinear generation curve of WTG. Reliability methodology of power system including WTG has already been developed with considering multi-state simulation over the years in the world. The multi-state model already developed by authors is used for WTG reliability simulation in this study. Second, the power system including HVDC includes AC/DC converter and DC/AC inverter substation. The substation is composed of a lot of thyristor devices, in which devices have possibility of failure occurrence in potential. Failure model of AC/DC converter and DC/AC inverter substation in order to simulate HVDC reliability is newly proposed in this paper. Furthermore, this problem should be formulated in hierarchical level II(HLII) reliability evaluation because of best bus choice problem for connecting new HVDC and transmission lines consideration. HLII reliability simulation technique is not simple but difficult and complex. CmRel program, which is adequacy reliability evaluation program developed by authors, is extended and developed for this study. Using proposed method, new HVDC connected bus point is able to be decided at best reliability level successfully. Methodology proposed in this paper is applied to small sized model power system.

A Study on Quality Evaluation Model of Mobile Device Management for BYOD (BYOD 환경의 MDM 보안솔루션의 품질평가모델에 관한 연구)

  • Rha, HyeonDae;Kang, SuKyoung;Kim, ChangJae;Lee, NamYong
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.6
    • /
    • pp.93-102
    • /
    • 2014
  • A mobile office environment using mobile devices, such as tablet PC, mobile phone is gradually increased in enterprises, banking and public institutions etc which is no limitation on places. It occurs advanced and persist security threats that are required effective security management policy and technical solution to be secure. For BYOD (Bring Your Own Device) environment, technical security management solutions of network control based, MDM (Mobile Device Management), MAM (Mobile Application Management), MCM (Mobile Contents Management) were released, evolved and mixed used. In perspective of integrated security management solution, mobile security product should be selected to consider user experience and environment and correct quality evaluation model of product is needed which is provided standards and guidance on the selection criteria when it was introduced. In this paper, the most widely used MDM solution is selected to take a look at its features and it was reviewed the product attributes with related international standard ISO/IEC25010 software quality attributes. And then it was derived evaluation elements and calculated the related metrics based on the quality analysis model. For the verification of quality evaluation model, security checks list and testing procedures were established; it applied metrics and analyzed the testing result through scenario based case study.

  • PDF

Evaluation on the Practicum Using Standardized Patients for Nursing Assessment to Articular Disease (표준화 환자를 이용한 관절질환 간호사정 실습교육의 평가)

  • Yi, Yeo-Jin;Lim, Nan-Young;Lee, Eun-Hee;Han, Hye-Ja;Kim, Joo-Hyun;Son, Haeng-Mi;Park, Young-Sook;Kang, Hyun-Sook;Cho, Kyung-Sook;Kim, Dong-Oak;Kwon, Sung-Bok;Lee, In-Ok
    • Journal of muscle and joint health
    • /
    • v.14 no.2
    • /
    • pp.137-148
    • /
    • 2007
  • Purpose: This study was performed to evaluate of practicum by using standardized patient(SP) for nursing assessment. Method: This study had 2 steps. The 1st-step was pre-intervention stage including selection of a learning title, formation of case scenario, training of SP and developing the evaluation tools for students' clinical competence to assessment, 6 categories 29 items. The 2nd-step consisted of intervention and evaluation stages. 34 nursing students divided 2 groups participated in assessing the SP. Evaluation of each group was performed by 2 nursing professors. All students recorded their feelings after assessing the SP. The SP also evaluated about nursing students' attitude toward the SP. Results: ICC(Interclass correlation coefficient) between 2 groups was over 0.7 all categories. Students' assessing score(range 0-1) was muscular-joint function status(0.41), nutritional status(0.39), history taking(0.38), IADL(0.18), ADL(0.15), and emotional status (0.07). The mean scores of the nursing students' attitude by SP was 4.03(range 1-6). Also most students showed positive reactions to the education using SP because they had the chance to experience what they could not practice in clinical setting. Conclusion: The evaluation tool revealed high reliability. Nursing students' clinical competence was below average. But they took a good attitude to SP. We recommended further research using SP with various disease.

  • PDF

Development and Evaluation on a Model for Reducing SO2: Case Study on Global 2100 Model (산성비 원인물질인 이산화황 저감모형 구축과 평가에 관한 연구: Global 2100 모형을 중심으로)

  • Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.93-102
    • /
    • 1997
  • Acid rain below pH 5.6 is responsible for 40% of annual precipitation in Korea and it is more serious especially in major cites. Because of that, it is urgent to make measures to reduce the emission of $SO_2$, one of the major air pollutants causing acid rain. The national total emission of $SO_2$ in 1994 was estimated as 1.6 million tons. The $SO_2$ emission in 2020, is expected to increase up to 3.2 million tons, about 2 times that of 1994 under Business-As-Usual scenario. We could take various $SO_2$ reduction measures such as installing desulfurization facilities, the supply of low-sulfur oil and clean fuel(LNG), energy savings, upgrading of production process. However, it is necessary to check the economic feasibility and the attainability to reduction target with a dynamic optimization mode, "Global 2100 Model". The cost-benefit analyses for the measures using the revised "Global 2100 Model" clearly revealed that the desulfurization facilities should be introduced to reduce the $SO_2$ concentration to 0.01 ppm with fuel substitution. If the introduction of desulfurization facilities is delayed, We can not attain the goal of Ministry of Environment before the year of 2012, even in the case that almost all the fuels would be substituted with LNG.

  • PDF

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

External dose assessment for workers dismantling the bio-shield of a commercial power nuclear reactor: Case study of Kori-1, Korea

  • Lee, ChoongWie;Lee, Donghyun;Kim, Hee Reyoung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2085-2091
    • /
    • 2020
  • The license for Kori-1, the first commercial reactor in Busan, Korea, was terminated in June 2017; therefore, preparations are being made for its decommissioning. Because the radioactivity of Bio-shield varies greatly throughout the structure, the doses received by the workers depend on the location, order, and duration of dismantling operations. Thus, a model for evaluating the worker external dose during the dismantling of the Kori-1 bio-shield was developed, and work scenarios for dose assessment were designed. The Dose evaluation code VISIPLAN was used for dose assessment. The dose rate around the bio-shield was evaluated and the level of exposure to the operator was evaluated according to the work scenario. The maximum annual external dose was calculated as 746.86 mSv for a diamond wire saw operator under dry cutting conditions, indicating that appropriate protective measures, such as changing dismantling sequence, remote monitoring, shield installation, and adjustment of work team are necessary for the safe dismantling of the bio-shield. Through these protective measures, it was found that the worker's dose could be below the dose limit.

Evaluation of thermal comfort and cooling loads for a multistory building

  • Lykartsis, Athanasios;B-Jahromi, Ali;Mylona, Anastasia
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The latest UK Climate Projections (UKCP09) show that mean daily temperatures will increase everywhere in the United Kingdom. This will significantly affect the thermal and energy performance of the current building stock. This study examines an institutional fully glazed building and looks into the changes in the cooling loads and thermal comfort of the occupants during the occupied hours of the non-heating period. Furthermore, it investigates the effect of relative humidity (RH) on thermal comfort. The Design Summer Year (DSY) 2003 for London Heathrow has been used as a baseline for this study and the DSY 2050s High Emissions scenario was used to examine the performance of the building under future weather conditions. Results show a 21% increase of the cooling loads between the two examined scenarios. Thermal comfort appears to be slightly improved during the months of May and September and marginally worsen during the summer months. Results of the simulation show that a relative humidity control at 40% can improve the thermal comfort for 53% of the occupied hours. A comparison of the thermal comfort performance during the hottest week of the year, shows that when the relative humidity control is applied thermal comfort performance of the 2050s is similar or better compared to the thermal comfort performance under the baseline.