• Title/Summary/Keyword: Scattering Cross Section

Search Result 156, Processing Time 0.029 seconds

Stable Analysis of Electromagnetic Scattering from Arbitrarily Shaped Conductors Coated with a Dielectric Material (유전체로 코팅된 임의 형태 도체의 안정된 전자파 산란 해석)

  • 한상호;정백호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1225-1231
    • /
    • 2003
  • In this paper, we present the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional conducting objects coated with dielectric materials. The integral equation treated here is the combined field integral equation(CFIE). The objectives of this paper is to illustrate that only the CFIE formulation is a valid methodology in removing the interior resonance problem, which occurs at a frequency corresponding to an internal resonance of the structure. Numerical results of radar cross section for coated conducting structures are presented and compared with other available solutions.

Effect of Silver Nanoparticles with Indium Tin Oxide Thin Layers on Silicon Solar Cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.91-94
    • /
    • 2017
  • AThe effect of localized surface plasmon on silicon substrates was studied using silver nanoparticles. The nanoparticles were formed by self-arrangement through the surface energy using rapid thermal annealing (RTA) technique after the thin nanolayer of silver was deposited by thermal evaporation. By the theoretical calculation based on Mie scattering and dielectric function of air, indium tin oxide (ITO), and silver, the strong peak of scattering cross section of silver nanoparticles was found at 358 nm for air, and 460 nm for ITO, respectively. Accordingly, the strong suppression of reflectance under the condition of induced light of $30^{\circ}$ occurred at the specific wavelength which is almost in accordance with peak of scattering cross section. When the external quantum efficiency was measured using silicon solar cells with silver nanoparticles, there was small enhancement peak near the 460 nm wavelength in which the light was resonated between silver nanoparticles and ITO.

Neutron Cross Section Evaluation on Dy Isotopes

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.154-164
    • /
    • 2002
  • Neutron cross section data on Dy-160, Dy-161, Dy-162, Dy-163 and Dy-164 were calculated and evaluated in the energy range of 1 keV to 20 MeV using a spherical optical model, statistical model and pre-equilibrium model. The energy dependent optical model potential parameters were obtained based on the recent experimental data. The width fluctuation correction in Hauser-Feshbach particle decay and the quantum mechanical approach in pre-equilibrium analysis were introduced and gave a better cross section calculation in EMPIRE-II. The total, elastic scattering and threshold reaction cross sections were evaluated and compared with the evaluated files. The model calculated (n, tot), (n, ${\gamma}$) and (n, p) cross sections were in good agreement with the experimental data in the measured energy range. The results will be applied to ENDF/B-VI for data improvement.

Partial Photoionization Cross Section of Collinear eZe Helium: Numerical Confirmation of Semiclassical Predictions

  • Lee, Min-Ho;Choi, Nark Nyul
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1486-1494
    • /
    • 2018
  • Based on the semiclassical theory of chaotic scattering, Tanner et al. [J. Phys. B 40, F157 (2007)] proposed the fluctuation in the partial photoionization cross section of helium below the double-ionization threshold would show the same characteristics as in the total cross section, predicting that the Fourier spectrum of the fluctuation reveals peaks at the classical actions of closed triple collision orbits and the amplitude of the fluctuation decreases algebraically as the energy approaches the double-ionization threshold. In that paper, however, the predictions were not clearly confirmed due to the lack of experimental data with sufficient accuracy. So instead, we calculate the partial photoionization cross sections of collinear eZe helium for the energy range from the single-ionization threshold $I_{20}$ to $I_{32}$ in order to numerically confirm the predictions. Analysis of the fluctuation in the partial cross section shows that the predictions are indeed valid. Our findings mean that the fluctuation in the partial photoionization cross section can be described by classical triple collision orbits in the semiclassical limit. Thus it explains in a natural way the mirroring and mimicking structures observed in cross section signals for different ionization channels.

Factorization of the Jet Mass Distribution in the Small R Limit

  • Idilbi, Ahmad;Kim, Chul
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1230-1239
    • /
    • 2018
  • We derive a factorization theorem for the jet mass distribution with a given $p^J_T$ for the inclusive production, where $p^J_T$ is a large jet transverse momentum. Considering the small jet radius limit ($R{\ll}1$), we factorize the scattering cross section into a partonic cross section, the fragmentation function to a jet, and the jet mass distribution function. The decoupled jet mass distributions for quark and gluon jets are well-normalized and scale invariant, and they can be extracted from the ratio of two scattering cross sections such as $d{\sigma}/(dp^J_TdM^2_J)$ and $d{\sigma}/dp^J_T $. When $M_J{\sim}p^J_TR$, the perturbative series expansion for the jet mass distributions works well. As the jet mass becomes small, large logarithms of $M_J/(p^J_TR)$ appear, and they can be systematically resummed through a more refined factorization theorem for the jet mass distribution.

General Theory for Enhancing the Transmission Efficiency through Small Apertures (소형 개구의 투과효율 향상을 위한 일반 이론)

  • Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1113-1120
    • /
    • 2014
  • In this paper, general methods for enhancing the transmission efficiency through the small subwavelength aperture in an infinite conducting plane are considered first by use of the transmission-resonant aperture like the ridged circular aperture structure, second by employing the transmission-resonant cavity structure. In particular, the maximum transmission cross section is found to be $\frac{2G{\lambda}^2}{4{\pi}}[m^2]$ for the two structures, where G is the gain of the aperture in the output half space. As experimental works, the impedance matching characteristics are investigated for the cases that above two structures are incorporated as a potential near field microscopic probe in the waveguide end. As a complementary problem to the above transmission-resonant aperture problem, some discussions are also given on the scattering resonance by the scattering object much smaller than the wavelength. This discussion may provide a good understanding of the physics for the phenomena that the maximum scattering cross section is much larger than the physical size of the atom in atomic physics area.

Measurement and simulation of high-frequency bistatic sea surface scattering channel in shallow water of Geoje bay (거제 내만해역에서의 고주파 양상태 해수면 음파산란 채널 측정 및 모의)

  • Choi, Kang-Hoon;Kim, Yongbin;Kim, Sea-Moon;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • High-frequency bistatic sea surface scattering channels according to sea state were measured at an experimental site of Geoje bay in April 2020, and compared with predictions based on scattering theory. A linear frequency-modulated signal with a center frequency of 128 kHz and a bandwidth of 32 kHz was used for the acoustic measurements. Sea surface wavenumber spectrum was calculated from surface roughness data measured by a wave buoy, and bistatic scattering cross-section of Small Slope Approximation (SSA) based on the wavenumber spectrum was estimated. In addition, scattering from near-surface bubbles using wind speed measured during experiments was considered. Surface scattering channel intensity impulse responses were simulated using the scattering cross-section and the simulation results were compared and analyzed with the field data.

Dense Spray Patternation using Optical Tomography

  • Cho, Seongho;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.398-407
    • /
    • 2013
  • Optical tomography was used to measure the pattern of spray cross-section. The maximum-likelihood estimation (MLE) algorithm was used to reconstruct the spray cross-section from the measured transmission rate of the spray. A swirl-type injector was used to form an optically dense spray, and the test was carried out in a high-pressure chamber, to control the pressure condition of the test site. Before the experiment, the reliability of the MLE-based reconstruction algorithm was verified, by comparing it with a conventional filtered back projection reconstruction (FBP) method. The MLE algorithm showed superior reconstruction of the image. In the spray patternation experiment, the results of the optical tomography and optical line patternator, which uses Mie scattering signal information, were compared. While measuring the cross-section of optically dense spray, the intensity of the scattering signal had attenuated to an uncorrectable level, which led to incorrect spray pattern measurement by the optical line patternator. However, reliable results were obtained by optical tomography, under the same condition. Finally, the pattern of the optically dense spray was measured at various chamber pressures, of up to 3 MPa. As the chamber pressure increased, the hollow cone-shaped swirl spray shrank, and the attenuation coefficient value of the inner region increased.

The Determination of electron collision cross sections by electron swarm method (전자군 방법에 의한 충돌단면적 결정)

  • 전병훈;박재준;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.236-239
    • /
    • 2002
  • The electron-atom collision studies has been essentially use\ulcorner for testing and developing suitable theories of the scattering and collision processes, and for providing a tool for obtaining detailed information on the structure of the target atoms and molecules and final collision products. And, the development of that has also been strongly motivated by the need for electron collision data in such fields as laser physic and development, astrophysics, plasma devices, upper atmospheric processes and radiation physics. Therefore, we explains the concept and the principle of determination of the electron collision cross sections for atoms and molecules by using the present electron swarm method.

  • PDF