• Title/Summary/Keyword: Scanning model

Search Result 950, Processing Time 0.026 seconds

Assessing the Positioning Accuracy of High density Point Clouds produced from Rotary Wing Quadrocopter Unmanned Aerial System based Imagery (회전익 UAS 영상기반 고밀도 측점자료의 위치 정확도 평가)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.39-48
    • /
    • 2015
  • Lately, Unmanned Aerial Vehicles(UAV), Unmanned Aerial Systems(UAS) or also often known as drones, as a data acquisition platform and as a measurement instrument are becoming attractive for many photogrammetric surveying applications, especially generation of the high density point clouds(HDPC). This paper presents the performance evaluation of a low-cost rotary wing quadrocopter UAS for generation of the HDPC in a test bed environment. Its performance was assessed by comparing the coordinates of UAS based HDPC to the results of Network RTK GNSS surveying with 62 ground check points. The results indicate that the position RMSE of the check points are ${\sigma}_H={\pm}0.102m$ in Horizonatal plane, and ${\sigma}_V={\pm}0.209m$ in vertical, and the maxium deviation of Elevation was 0.570m within block area of ortho-photo mosaic. Therefore the required level of accuracy at NGII for production of ortho-images mosaic at a scale of 1:1000 was reached, UAS based imagery was found to make use of it to update scale 1:1000 map. And also, since this results are less than or equal to the required level in working rule agreement for airborne laser scanning surveying of NGII for Digital Elevation Model generation of grids $1m{\times}1m$ and 1:1000 scale, could be applied with production of topographic map and ortho-image mosaic at a scale of 1:1000~1:2500 over small-scale areas.

The Effect of Hair Growth and Distribution by Sophorae Radix, Panax ginseng, Salvia miltiorrhiza BUNGE Water Extracts (고삼, 인삼 및 단삼 혼합물에 의한 모발의 성장과 분포에 미치는 영향)

  • Hwang, Cho-Won;Hwang, Jae-Wan;Kim, Sang-Tae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.3
    • /
    • pp.215-219
    • /
    • 2010
  • In this study, we investigated effects of Monegy (mixture of Sophorae Radix, Panax ginseng, Salvia miltiorrhiza BUNGE) on epilate-induced hair-loss in dorsal region of C57/BL6 mice and external structure of human hair. For morphological and histological analysis in scalp of epilate-induced hair-loss animal model, we utilized several microscopic techniques, such as confocal laser scanning microscopy (CLSM) and LAS 4000. Confocal analysis showed the distribution of FITC-conjugated Monegy and penetration depth compared with normal and control group. Furthermore, when Monegy was topically administrated onto a C57BL6 mouse, it penetrated very well. The fluorescence intensity was increased upto 205 and 113 folds compared to normal and control group, respectively. Also, area of fluorescence was increased to upto 255 to 127 folds compared to normal and control group. Broad scale area of fluorescence in dermis region was observed in the Monegy-treated mice. Furthermore, Monegy induced upto 75% hair repair against depilation. It might be promoted via the induction of growth factors in hair follicle.

Effect of Solubilizing and Microemulsifying Excipients in Polyethylene Glycol 6000 Solid Dispersion on Enhanced Dissolution and Bioavailability of Ketoconazole

  • Heo, Min-Young;Piao, Zong-Zhu;Kim, Tae-Wan;Cao, Qing-Ri;Kim, Ae-Ra;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.604-611
    • /
    • 2005
  • Polyethylene glycol (PEG) 6000-based solid dispersions (SDs), by incorporating various pharmaceutical excipients or microemulsion systems, were prepared using a fusion method, t o compare the dissolution rates and bioavailabilities in rats. The amorphous structure of the drug in SDs was also characterized by powder X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The ketoconazole (KT), as an antifungal agent, was selected as a model drug. The dissolution rate of KT increased when solubilizing excipients were incorporated into the PEG-based SDs. When hydrophilic and lipophilic excipients were combined and incorporated into PEG-based SDs, a remarkable enhancement of the dissolution rate was observed. The PEG-based SDs, incorporating a self microemulsifying drug delivery system (SMEDDS) or microemulsion (ME), were also useful at improving the dissolution rate by forming a microemulsion or dispersible particles within the aqueous medium. However, due to the limited solubilization capacity, these PEG-based SDs showed dissolution rates, below 50% in this study, under sink conditions. The PEG-based SD, with no pharmaceutical excipients incorporated, increased the maximum plasma concentration (C$_{max}$) and area under the plasma concentration curve (AUC$_{0-6h}$) two-fold compared to the drug only. The bioavailability was more pronounced in the cases of solubilizing and microemulsifying PEG-based SDs. The thermograms of the PEG-based SDs showed the characteristic peak of the carrier matrix around 60$^{\circ}C$, without a drug peak, indicating that the drug had changed into an amorphous structure. The diffraction pattern of the pure drug showed the drug to be highly crystalline in nature, as indicated by numerous distinctive peaks. The lack of the numerous distinctive peaks of the drug in the PEG-based SDs demonstrated that a high concentration of the drug molecules was dissolved in the solid-state carrier matrix of the amorphous structure. The utilization of oils, fatty acid and surfactant, or their mixtures, in PEG-based SD could be a useful tool to enhance the dissolution and bioavailability of poorly water-soluble drugs by forming solubilizing and microemulsifying systems when exposed to gastrointestinal fluid.

AGING EFFECT ON THE MICROTENSILE BOND STRENGTH OF SELF-ETCHING ADHESIVES (자가부식 접착제의 미세인장접착강도에 대한 시효처리 효과)

  • Park, Jin-Seong;Kim, Jong-Sun;Kim, Min-Su;Son, Ho-Hyeon;Gwon, Hyeok-Chun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.6
    • /
    • pp.415-426
    • /
    • 2006
  • In this study, the changes in the degree of conversion (DC) and the microtensile bond strength (MTBS) of self-etching adhesives to dentin was investigated according to the time after curing. The MTBS of Single Bond (SB, 3M ESPE, USA), Clearfil SE Bond (SE, Kuraray, Japan), Xeno-III (XIII, Dentsply, Germany), and Adper Prompt (AP, 3M ESPE, USA) were measured at 48h, at 1 week and after thermocycling for 5,000 cycles between 5$^{\circ}$C and 55$^{\circ}$C. The DC of the adhesives were measured immediately, at 48h and at 7 days after curing using a Fourier Transform Infra-red Spectrometer. The fractured surfaces were also evaluated with scanning electron microscope. The MTBS and DC were significantly increased with time and there was an interaction between the variables of time and material (MTBS, 2-way ANOVA, p = 0.018; DC, Repeated Measures ANOVA, p < 0.001). The low DC was suggested as a cause of the low MTBS of self-etching adhesives, XIII and AP, but the increase in the MTBS of SE and AP after 48h could not be related with the changes in the DC. The microscopic maturation of the adhesive layer might be considered as the cause of increasing bond strength.

THE EFFECT OF SOLDER AND LASER WELD ON CORROSION OF DENTAL ALLOYS (납착법과 레이저융합법이 치과용 합금의 부식에 미치는 영향)

  • Baik Jin;Woo Yi-Hung;Choi Dae-Gyun;Choi Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.264-279
    • /
    • 2005
  • Statement of problem. Intraoral corrosion not only affects the esthetic and function of metallic dental restoration, but also has biologic consequences as well. Therefore, corrosion is considered a primary factor when choosing the dental alloy and laboratory technique. Purpose. The objective of this study was to compare the effects of solder and laser weld on corrosion Material and methods. Test specimens were made of 2 types of gold alloys, Co-Cr and Ni-Cr alloy and fabricated 3 methods, respectively: as cast, solder, and laser weld. For the analysis of corroding properties, potentiodynamic polarization test and immersion test conducted. The potentiodynamic polarization scan curve were recorded in 0.9% NaCl solution(pH 7) using Potentiostat/Galyanostat Model 273A. All specimens were exposed to 0.9% NaCl solution(pH 2.3) during 14 days. Elemental release into corrosive solution was measured by atomic emission spectrometry Differences in corrosion potential and mass release were determined using ANOVA. Results and conclusion. Through analyses of the data, following results were obtained. 1. In Pontor MPF and Wiron 99, corrosion potential of the solder group was statistically lower than as cast and laser weld group (p<0.05) , but there was no difference between corrosion potential of solder group and laser weld group in Pontor MPF and no differences between as cast and laser weld group (p>0.05). In Jel-Bios 10 and Wirobond, there was no difference of corrosion potential according to joining methods(p>0.05). 2. In all tested alloys, the amount of released metallic ion was greatest in the solder group(p<0.05). There was no difference between as cast group and laser weld group in Jel-Bios 10 and Wirobond(p>0.05). 3. In scanning electron microscopic examination. except soldered Wiron 99 specimens, it is impossible to discriminate the corrosive property of solder and laser weld. 4. Under the this experimental circumstances, laser weld appears superior to the solder when corrosion is considered.

Study of Sensor Technology Analysis and Site Application Model for 3D-based Global Modeling of Construction Field (건설 시공현장의 3D기반 광대역 모델링을 위한 Sensor 기술 분석과 향후 현장적용 모델 연구)

  • Kwon, Hyuk-Do;Koh, Min-Hyeok;Yoon, Su-Won;Kwon, Soon-Wook;Chin, Sang-Yoon;Kim, Yea-Sang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.938-942
    • /
    • 2007
  • The importance of process improvement under construction has arisen from recent issue, lower productivity in the construction site. The various 3D modeling program is utilized in the procedure of construction as an alternative solution. However, it's still shortage of the consideration about a specific technical application. The purpose of the study in this paper is helpful to improve the productivity of construction site using 3D realization of constructing place as one of extensive modeling technologies, which leads to not only efficient management of construction site allowing people to check the real time situation in the place but also the revitalization of information flow about building process control and prgress, Therefore, I research into modeling algorithm and extensive construction site realization technology. 3D realization of building place would reduce the safety concerns by providing the real time information about construction site, and it could help to access easily to similar project through collecting and appling the database of sites. Furthermore it can be an opportunity to develop the procedure of production in construction industry and to upgrade the image of this field.

  • PDF

THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES (Glass ionomer cement 표면의 산부식 효과에 관한 연구)

  • Han, Seung-Weon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

The effects of fermented milk intake on the enamel surface (유산균 발효유 섭취가 법랑질 표면에 미치는 영향)

  • Kim, Kyung-Hee;Choi, Choong-Ho
    • Journal of Korean society of Dental Hygiene
    • /
    • v.21 no.5
    • /
    • pp.507-515
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the extent of the potential erosion of enamel induced by three different types of commercial fermented milk using the pH cycle model. Methods: Specimens were treated and soaked up in three types of fermented milk and in mineral water for 10 min, four times a day for 8 days, and all of the specimens were immersed in artificial saliva outside of treatment times. The microhardness of the surface was measured by a microhardness tester, and a scanning electron microscope (SEM) was used to identify the enamel surface morphology. Results: The differences in the surface microhardness (ΔVHN) of enamel were different among the groups (p<0.05). The four groups were in descending order of ΔVHN: the liquid type group, condensed-drink type group, condensed-stirred type group, and control group. The liquid type group had a higher ΔVHN than the other two fermented milk groups (p<0.05). Based on SEM observation, the most severe surface damage was due to the liquid type of fermented milk. Conclusions: Customers' careful discretion is advised when purchasing these types of fermented milk. This information is anticipated to be of much value in the prevention of dental erosion.

Identification of Foreign Objects in Soybeans Using Near-infrared Spectroscopy (근적외선 분광법을 이용한 콩과 이물질의 판별)

  • Lim, Jong-Guk;Kang, Sukwon;Lee, Kangjin;Mo, Changyeon;Son, Jaeyong
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.136-142
    • /
    • 2011
  • The objective of this research was to classify intact soybeans and foreign objects using near-infrared (NIR) spectroscopy. Intact soybeans and foreign objects were scanned using a NIR spectrometer equipped with scanning monochromator. NIR spectra of intact soybeans and foreign objects in the wavelength range from 900 to 1800 nm were collected. The classification of intact soybeans and foreign objects were conducted by using partial least-square discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) multivariate methods. Various types of data pretreatments were tested to develop the classification models. Intact soybeans and foreign objects were successfully classified by the PLS-DA prediction model with mean normalization pretreatment. These results showed the potential of NIR spectroscopy combined with multivariate analysis as a method for classifying intact soybeans and foreign objects.

Nickel Catalysts Supported on Ash-Free Coal for Steam Reforming of Toluene (무회분탄에 분산된 니켈 촉매의 톨루엔 수증기 개질)

  • PRISCILLA, LIA;KIM, SOOHYUN;YOO, JIHO;CHOI, HOKYUNG;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;LEE, SIHYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.559-569
    • /
    • 2018
  • Catalytic supports made of carbon have many advantages, such as high coking resistance, tailorable pore and surface structures, and ease of recycling of waste catalysts. Moreover, they do not require pre-reduction. In this study, ash-free coal (AFC) was obtained by the thermal extraction of carbonaceous components from raw coal and its performance as a carbon catalytic support was compared with that of well-known activated carbon (AC). Nickel was dispersed on the carbon supports and the resulting catalysts were applied to the steam reforming of toluene (SRT), a model compound of biomass tar. Interestingly, nickel catalysts dispersed on AFC, which has a very small surface area (${\sim}0.13m^2/g$), showed higher activity than those dispersed on AC, which has a large surface area ($1,173A/cm^2$). X-ray diffraction (XRD) analysis showed that the particle size of nickel deposited on AFC was smaller than that deposited on AC, with the average values on AFC ${\approx}11nm$ and on AC ${\approx}23nm$. This proved that heteroatomic functional groups in AFC, such as carboxyls, can provide ion-exchange or adsorption sites for the nano-scale dispersion of nickel. In addition, the pore structure, surface morphology, chemical composition, and chemical state of the prepared catalysts were analyzed using Brunauer-Emmett-Taylor (BET) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and temperature-programmed reduction (TPR).