• 제목/요약/키워드: Scanning electronic microscopy/energy-dispersive X-ray spectroscopy

검색결과 28건 처리시간 0.03초

Te이 과량 포함된 $Sb_xTe_{1-x}$ 나노와이어 및 나노튜브의 합성 및 분석 (Synthesis and Characterization of Te-rich $Sb_xTe_{1-x}$ Nanowires and Nanotubes)

  • 이준석;노광수;정순원;윤성민;유병곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.423-423
    • /
    • 2008
  • One dimensional (1D) nanostructures, including nanowires, nanorods, nanobelts, and nanotubes, have been the focus of current research on nanotechnology because of their fundamental significance in chemistry, physics, materials science and engineering, and potential applications in nanoelectronics. We have synthesized Te-rich $Sb_xTe_{1-x}$ nanowires and nanotubes via thermal evaporation method under vapor-solid mechanism. The physical morphology and chemical composition of the fabricated nanowires and nanotubes were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX).

  • PDF

Calcium pyrophosphate dihydrate deposition disease in the temporomandibular joint: diagnosis and treatment

  • Kwon, Kwang-Jun;Seok, Hyun;Lee, Jang-Ha;Kim, Min-Keun;Kim, Seong-Gon;Park, Hyung-Ki;Choi, Hang-Moon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.19.1-19.6
    • /
    • 2018
  • Background: Calcium pyrophosphate dihydrate deposition disease (CPDD) is a rare disease in the temporomandibular joint (TMJ) space. It forms a calcified crystal mass and induces a limitation of joint movement. Case presentation: The calcified mass in our case was occupied in the left TMJ area and extended to the infratemporal and middle cranial fossa. For a complete excision of this mass, we performed a vertical ramus osteotomy and resected the mass around the mandibular condyle. The calcified mass in the infratemporal fossa was carefully excised, and the segmented mandible was anatomically repositioned. Scanning electronic microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) microanalysis was performed to evaluate the calcified mass. The result of SEM/EDS showed that the crystal mass was completely composed of calcium pyrophosphate dihydrate. This result strongly suggested that the calcified mass was CPDD in the TMJ area. Conclusions: CPDD in the TMJ is a rare disease and is difficult to differentially diagnose from other neoplasms. A histological examination and quantitative microanalysis are required to confirm the diagnosis. In our patient, CPDD in the TMJ was successfully removed via the extracorporeal approach. SEM/EDS microanalysis was used for the differential diagnosis.

마이크로입자의 레이저 Ablation으로 형성된 나노입자의 수펴소닉 적층법을 이용한 퍼멀로이 나노구조박막 적층에 관한 연구 (A Study on the Deposition of Permalloy Nanostructured Thin Film Utilizing Supersonic Deposition of Nanoparticles Formed by Laser Ablation of Microparticles)

  • 윤의중;정명희
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.478-483
    • /
    • 2005
  • In this paper, we synthesized 10 to 20 nm diameter NiFe nanoparticles and nanoparticle films utilizing supersonic jet deposition of nanoparticle aerosols generated by laser ablation of $30\;to\;45{\mu}m$ diameter permalloy $(Ni_{81}Fe_{19} \;at\;{\%})$ microparticles. The component and composition of the nanoparticles were characterized by an energy dispersive X-ray spectroscopy. The morphology of the nanoparticles and nanoparticle films was analyzed by a high-resolution transmission electron microscopy and a scanning electron microscopy, respectively. The experimental results showed that the nanoparticles and nanoparticle films have remarkable properties with an excellent preservation of the composition of feedstock permalloy microparticles. The purpose of the present work is to present details on the composition and nanostructural characterizations for NiFe nanoparticles and nanoparticle films prepared by laser ablation of microparticles (LAM).

$CH_4$/Ar 유도 결합 플라즈마를 이용한 Sapphire 기판의 식각 특성 (Etching properties of sapphire substrate using $CH_4$/Ar inductively coupled plasma)

  • 엄두승;김관하;김동표;양설;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.102-102
    • /
    • 2008
  • Sapphire (${\alpha}-Al_2O_3$) has been used as the substrate of opto-electronic device because of characteristics of thermal stability, comparatively low cost, large diameter, optical transparency and chemical compatibility. However, there is difficulty in the etching and patterning due to the physical stability of sapphire and the selectivity with sapphire and mask materials [1,2]. Therefore, sapphire has been studied on the various fields and need to be studied, continuously. In this study, the etching properties of sapphire substrate were investigated with various $CH_4$/Ar gas combination, radio frequency (RF) power, DC-bias voltage and process pressure. The characteristics of the plasma were estimated for mechanism using optical emission spectroscopy (OES). The chemical compounds on the surface of sapphire substrate were investigated using energy dispersive X-ray (EDX). The chemical reaction on the surface of the etched sapphire substrate was observed by X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was used to investigate the vertical and slope profiles.

  • PDF

Improving Electrochemical Properties of LiFePO4 by Doping with Gallium

  • Nguyen, Van Hiep;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권6호
    • /
    • pp.320-323
    • /
    • 2014
  • Ga-doped $LiFePO_4$ cathode materials were synthesized using a hydrothermal method. The microstructural characteristics and electrochemical performances were systematically investigated using field emission scanning electron microscopy, high-resolution X-ray diffraction, energy dispersive X-ray spectroscopy, charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the as-prepared samples, $LiFe_{0.96}Ga_{0.04}PO_4$ demonstrates the best electrochemical properties in terms of discharge capacity, electrochemical reversibility, and cycling performance with an initial discharge capacity of $125mAh\;g^{-1}$ and high lithium ion diffusion coefficient of $1.38{\times}10^{-14}cm^2s^{-1}$ (whereas for $LiFePO_4$, these were $113mAh\;g^{-1}$ and $8.09{\times}10^{-15}cm^2\;s^{-1}$, respectively). The improved electrochemical performance can be attributed to the facilitation of Li+ ion effective diffusion induced by $Ga^{3+}$ substitution.

인이 도핑된 NiCo2O4 전극 제조 공정의 간소화를 통한 전극 특성의 변화 (Variations in electrode characteristics through simplification of phosphorus-doped NiCo2O4 electrode manufacturing process)

  • 이석희;차현진;박정환;손영국;황동현
    • 한국표면공학회지
    • /
    • 제56권5호
    • /
    • pp.299-308
    • /
    • 2023
  • In this study, phosphorus (P)-doped nickel cobaltite (P-NiCo2O4) and nickel-cobalt layered double hydroxide (P-NiCo-LDH) were synthesized on nickel (Ni) foam as a conductive support using hydrothermal synthesis. The thermal properties, crystal structure, microscopic surface morphology, chemical distribution, electronic state of the constituent elements on the sample surface, and electrical properties of the synthesized P-NiCo2O4 and P-NiCo-LDH samples were analyzed using thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The P-NiCo2O4 electrode exhibited a specific capacitance of 1,129 Fg-1 at a current density of 1 Ag-1, while the P-NiCo-LDH electrode displayed a specific capacitance of 1,012 Fg-1 at a current density of 1 Ag-1. When assessing capacity changes for 3,000 cycles, the P-NiCo2O4 electrode exhibited a capacity retention rate of 54%, whereas the P-NiCo-LDH electrode showed a capacity retention rate of 57%.

$NaNO_3$ 전해액의 전기화학적 메커니즘 연구 (A Study on the electrochemical mechanism of $NaNO_3$ electrolyte)

  • 이영균;한상준;박성우;이우선;서용진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.116-116
    • /
    • 2008
  • Cu CMP 공정시 높은 압력으로 인하여 low-k 유전체막에 손실을 주며, 디싱과 에로젼 같은 문제점을 해결하기 위하여 기존의 CMP에 전기화학을 결합시킴으로서 낮은 하력에서의 Cu 평탄화를 달성 할 수 있는 ECMP(Electrochemical Mechanical Polishing)기술이 필요하게 되었다. 본 논문에서는 $NaNO_3$ 전해액이 Cu 표면에 미치는 영향을 SEM (Scanning electron microscopy), EDS (Energy Dispersive Spectroscopy), XRD(X-ray Diffraction)를 통하여 전기화학적 특성을 비교 분석하였다.

  • PDF

Effects of Sheet Thickness on the Electromagnetic Wave Absorbing Characterization of Li0.375Ni0.375Zn0.25-Ferrite Composite as a Radiation Absorbent Material

  • Kim, Dong-Young;Yoon, Young-Ho;Jo, Kwan-Jun;Jung, Gil-Bong;An, Chong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • 제16권3호
    • /
    • pp.150-158
    • /
    • 2016
  • This paper reports on a study of LiNiZn-ferrite composite as a radiation absorbent material (RAM). The electromagnetic (EM) wave absorbers are composed of an EM wave absorbing material and a polymeric binder. The surface morphology, chemical composition, weight percent of the ferrite composite of the toroid sample, magnetic properties, and return loss are investigated using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and network analyzer. For preparing the absorbing sheet, chlorinated polyethylene (CPE) is used as a polymeric binder. The EM wave absorption properties of the prepared samples were studied at 4 - 8 GHz. We can confirm the effects of the thickness of the samples for absorption properties. An absorption bandwidth of more than a 10-dB return loss shifts toward a lower frequency range along with an increase in the thickness of the absorber.

탄소 나노튜브에 대한 비정질 질화막의 코팅 및 전계방출 특성 (Coating of amorphous nitrides on carbon nanotubes and field emission properties)

  • 노영록;김종필;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1244_1245
    • /
    • 2009
  • Coating of amorphous nitride thin layers, such as boron nitride (BN) and carbon nitride (CN), has been performed on carbon nanotubes (CNTs) for the purpose of enhancing their electron-emission performances because those nitride films have relatively low work functions and commonly exhibit negative electron affinity behavior. The CNTs were directly grown on metal-tip (tungsten, approximately 500 nm in diameter at the summit part) substrates by inductively coupled plasma-chemical vapor deposition (ICP-CVD). Sharpening of the tungsten tips were carried out by electrochemical etching. Morphologies and microstructures of BN and CN films were analyzed by field-emission scanning electron microscopy (FE-SEM), energy dispersive x-ray (EDX) spectroscopy, and Raman spectroscopy. The electron-emission properties (such as maximum emission currents and turn-on fields) of the BN-coated and CN-coated CNT-emitters were characterized in terms of the thickness of BN and CN layers.

  • PDF

$NaNO_3$ 전해액의 최적화로 인한 ECMP 공정 개선에 관한 연구 (A study on the ECMP process improvement with optimization of $NaNO_3$ Electrolyte)

  • 이영균;박성우;한상준;이성일;정판검;최권우;서용진;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.53-53
    • /
    • 2007
  • 반도체 소자의 고집적화, 미세화 화로 인해 반도체의 동작속도를 증가시키기 위하여 Cu를 이용한 금속배선이 주목받게 되었으나, 높은 압력으로 인한 보은 Cu 영역에서 과잉 디슁 현상과 에로젼을 유도하고 반도체 웨이퍼위의 low-k 물질에 손상을 줌에 따라 메탈라인 브리징과 단락을 초래할 있어, Cu의 단락인 islands를 남김으로서 표면 결항을 제거하지 못한다는 단점을 가지고 있었다. 그래서 이러한 문제점을 해결하기 위하여 기존의 CMP에 전기화학을 결합시킴으로서 낮은 하력에서의 Cu평탄화를 달성할 수 있는 ECMP (electrochemical mechanical polishing)기술이 필요하게 되었다. 따라서 본 논문에서는 전기화학적 기계적 연마(ECMP)작용을 위해, I-V 특성 곡선을 이용하여 패시베이션 막의 active, passive, transient, trans-passive영역의 전기화학적 특성을 비교 분석하였으며, Cu막의 표면 형상을 알아보기 위해 scanning electron microscopy (SEM) 측정과 energy dispersive spectroscopy (EDS)와 X-ray Diffraction (XRD) 분석을 통해 금속 화학적 조성을 조사하였다.

  • PDF