• Title/Summary/Keyword: Scanning Electron Microscopy (SEM)

Search Result 2,607, Processing Time 0.033 seconds

Microbial Leaching of Iron from Shinyemi Magnetite Ore (미생물을 이용한 신예미 자철광으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Suh, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • Microorganisms participate in a variety of geochemical processes such as weathering and formation of minerals, leaching of precious metals from minerals, and cycling of organic matter The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite ore by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial iron leaching experiments were performed using magnetite ore, Shinyemi magnetite ore, in well-defined media with and without bacteria at room temperature for a month. Water soluble Fe and Mn during the leaching experiments were determined by ICP analysis of bioleached samples, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 15 mg/L and Mn = 3.41 mg/L) was lower than that in the anaerobic environments (Fe = 32.8 mg/L and Mn = 5.23 mg/L). The medium pH typically decreased from 8.3 to 7.2 during a month incubation. The Eh of the initial medium decreased from +144.9 mV to -331.7 mV in aerobic environments and from -2.3 mV to -494.6 mV in anaerobic environments upon incubation with the metal reducing microorganisms. The decrease in pH is due to glucose fermentation producing organic acids and $CO_2$. The ability of bacteria to leach soluble iron from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite represents the largest pool of electron acceptor as well as to use as a novel biotechnology for leaching precious and heavy metals from raw materials.

모재/중간층/박막의 H/E ratio 구배에 따른 Cr계 경질 박막의 기계적 특성에 관한 연구

  • Kim, Hoe-Geun;Song, Myeon-Gyu;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.135-135
    • /
    • 2018
  • 천이금속 질화물 코팅은 우수한 기계적 특성들로 인해 공구 코팅으로 많이 사용 되어왔다. 그 중에서도 특히 Cr계 경질 코팅은 높은 경도와 낮은 표면조도, 우수한 마찰특성 등 뛰어난 기계적 특성을 나타내므로 공구 코팅으로의 적용 가능성이 크다. 그러나 최근 공구산업의 발전으로 인해 공구가 더욱 가혹한 환경에서 사용됨에 따라, 공구의 수명을 향상시키고 보호하기 위해 코팅의 높은 밀착력이 요구되고 있으며, 모재와 코팅 사이에 중간층을 합성함으로써 공구의 밀착력을 향상시키는 연구가 활발히 진행되고 있다. 이전 연구에서 모재/중간층/코팅간의 경도와 탄성계수 비율(H/E ratio)의 구배가 코팅의 밀착력에 큰 영향을 미치는 것으로 확인되었다. 그러므로, WC 모재와 Cr계 코팅의 중간값의 H/E ratio를 갖는 중간층의 합성을 통해 코팅의 밀착력을 향상시킬 수 있을 것으로 판단된다. 본 연구에서는, 코팅의 밀착력을 향상시키기 위해 다양한 중간층을 증착한 CrZrN, CrAlN 코팅을 비대칭 마그네트론 스퍼터링 장비를 이용하여 합성하였다. 모재로는 디스크 형상의 WC-6wt.%Co 시편을 사용하였고 Cr, Zr, Si, Al single 타겟을 이용하여 Cr, CrN, CrZrN, CrZrSiN 등의 중간층이 증착된 코팅을 합성했다. 코팅의 합금상, 경도 및 탄성계수, 미세조직 및 조성, 표면 조도을 확인하기 위해 X-ray diffractometer (XRD), Fischer scope, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy를 사용하였고, 코팅의 밀착 특성을 분석하기 위해 scratch tester와 optical microscopy (OM)를 이용하였다. 코팅의 내열성을 확인하기 위해 코팅을 furnace에 넣어 공기중에서 500, 600, 700, 800, 900, $1,000^{\circ}C$로 30분 동안 annealing 한 후에 nano-indentation을 사용하여 경도를 측정하였다. CrZrN 및 CrAlN 코팅을 나노 인덴테이션으로 분석한 결과, 모든 코팅의 경도(33.4-35.8 GPa)와 탄성계수(384.1-391.4 GPa)는 중간층의 종류에 상관없이 비슷한 값을 보인 것으로 확인됐다. 그러나, 코팅의 마찰계수는 중간층의 종류에 따라 다른 값을 보였다. CrZrN 코팅의 경우 CrN 합금상 중간층을 갖을 때 가장 낮은 값을 보였으며, CrAlN 코팅의 경우 CrN/CrZrSiN 중간층을 증착하였을때 마찰계수는 0.34로 CrZrN 중간층을 증착하였을 때(0.41)에 비해 낮은 값을 보였다. 또한, 코팅의 마모율 및 마모폭도 비슷한 경향을 보인 것으로 보아, CrN/CrZrSiN 중간층을 합성한 CrAlN 코팅의 내마모성이 상대적으로 우수한 것으로 판단된다. 코팅의 밀착력의 경우도 마찰계수와 비슷한 경향을 보였다. 이것은 중간층의 H/E ratio가 코팅의 내마모성에 미치는 영향에 의한 결과로 사료된다. H/E ratio는 파단시의 최대 탄성 변형율로써, 모재/중간층/코팅의 H/E ratio 구배에 따라 코팅 내의 응력의 완화 정도가 변하게 된다. WC 모재 (H/E=0.040)와 CrAlN 코팅(H/E=0.089) 사이에서 CrN, CrZrSiN 중간층의 H/E ratio는 각각 0.076, 0.083으로 모재/중간층/코팅의 H/E ratio 구배가 점차 증가함을 확인 할 수 있었고, 일정 응력이 지속적으로 가해지면서 진행되는 마모시험중에 CrN과 CrZrSiN 중간층이 WC와 CrAlN 코팅 사이에서 코팅 내부의 응력구배를 완화시키는 역할을 함으로써 CrAlN 코팅의 내마모성이 향상된 것으로 판단된다. 모든 코팅을 열처리 후 경도 분석 결과, CrN/CrZrSiN 중간층을 증착한 CrAlN 코팅은 $1,000^{\circ}C$까지 약 28GPa의 높은 경도를 유지한 것으로 확인 되었고, 이는 CrZrSiN 중간층 내에 존재하는 SiNx 비정질상의 우수한 내산화성에 의한 결과로 판단된다.

  • PDF

Effects of High Glucose and Advanced Glycosylation Endproducts(AGE) on the in vitro Permeability Model (당과 후기당화합물의 생체 외 사구체여과율 모델에 대한 역할)

  • Lee Jun-Ho;Ha Tae-Sun
    • Childhood Kidney Diseases
    • /
    • v.10 no.1
    • /
    • pp.8-17
    • /
    • 2006
  • Purpose : We describe the changes of rat glomerular epithelial cells when exposed to high levels of glucose and advanced glycosylation endproducts(AGE) in the in vitro diabetic condition. We expect morphological alteration of glomerular epithelial cells and permeability changes experimentally and we may correlate the results with a mechanism of proteinuria in DM. Methods : We made 0.2 M glucose-6-phsphate solution mixed with PBS(pH 7.4) containing 50 mg/mL BSA and pretense inhibitor for preparation of AGE. As control, we used BSA. We manufactured and symbolized five culture dishes as follows; B5 - normal glucose(5 mM) + BSA, B30 - high glucose(30 mM) + BSA, A5 - normal glucose(5 mM) + AGE, A30 - high glucose(30 mM) + AGE, A/B 25 - normal glucose(5 mM) + 25 mM of mannitol(osmotic control). After the incubation period of both two days and seven days, we measured the amount of heparan sulfate proteoglycan(HSPG) in each dish by ELISA and compared them with the B5 dish at 2nd and 7th incubation days. We observed the morphological changes of epithelial cells in each culture dish using scanning electron microscopy(SEM). We tried the permeability assay of glomerular epithelial cells using cellulose semi-permeable membrane measuring the amount of filtered BSA through the apical chamber for 2 hours by sandwich ELISA. Results : On the 2nd incubation day, there was no significant difference in the amount of HSPG between the 5 culture dishes. But on the 7th incubation day, the amount of HSPG increased by 10% compared with the B5 dish on the 2nd day except the A30 dish(P<0.05). Compared with the B5 dish on the 7th day the amount of HSPG in A30 and B30 dish decreased to 77.8% and 95.3% of baseline, respectively(P>0.05). In the osmotic control group (A/B 25) no significant correlation was observed. On the SEM, we could see the separated intercellular junction and fused microvilli of glomerular epithelial cells in the culture dishes where AGE was added. The permeability of BSA increased by 19% only in the A30 dish on the 7th day compared with B5 dish on the 7th day in the permeability assay(P<0.05). Conclusion: We observed not only the role of a high level of glucose and AGE in decreasing the production of HSPG of glomerular epithelial cells in vitro, but also their additive effect. However, the role of AGE is greater than that of glucose. These results seems to correlate with the defects in charge selective barrier. Morphological changes of the disruption of intercellular junction and fused microvilli of glomerular epithelial cells seem to correlate with the defects in size-selective barrier. Therefore, we can explain the increased permeability of glomerular epithelial units in the in vitro diabetic condition.

  • PDF

The Effects of Negative- and Positive- Charged Surfactants on In vitro DM Digestibility and the Growth of Ruminal Mixed Microorganisms (양(+) 이온성 및 음(-) 이온성 계면활성제 첨가가 반추위 혼합 미생물에 의한 In vitro 건물소화율 및 미생물 성장에 미치는 영향)

  • Lee, S.J.;Shin, N.H.;Kim, W.Y.;Moon, Y.H.;Kim, H.S.;Ha, J.K.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.647-656
    • /
    • 2007
  • In order to investigate the effects of supplemental ionic surfactants in in vitro ruminal fermentation, N-Lauroylsarcosine sodium salt(N-LSS) and sodium dodecyl sulfate(SDS) for negative(-) ionic surfactant, and hexadecylpyridinium chloride monohydrate(HPCM) and hexadecyltrimethyl ammonium bromide(HTAB) for positive (+) ionic surfactant were supplemented by 0.05% and 0.1% into the Dehority’s artificial medium containing rice straw(1mm) as a substrate. In vitro DM digestibility, the growth of rumen mixed microbes, pH, cumulative gas production and SEM(Scanning Electron Microscopy) observation of microbial attachment on rice straw particle were investigated through the experiment composing 9 treatments (two supplemental levels of two positive ionic(+) surfactant, two supplemental levels of two negative(-) ionic surfactant) including the control. The sample collection was at 6, 12, 24, 48 and 72 h post fermentation with 3 replications per treatments. DM digestibility in treatments supplemented (+) or (-) surfactants almost stopped afterward 12 h fermentation, in vitro DM digestibility at 72 h post fermentation in the ionic surfactants was at half level of that of the control(P<0.05). Accumulative gas production in in vitro was less(P<0.05) with addition of ionic surfactants compared to the control. The amount of rumen mixed microbes recovered from in vitro incubation fluid pleateaued at 12 h post fermentation for the positive (+) ionic surfactants, but steadily increased as fermentation time elapsed for the control. Rumen microbial growth rate was significantly(P<0.05) low in the negative(-) ionic surfactant compared to the control. pH of the incubation fluid was ranged from 6.02 to 7.20, and was the highest in the negative(-) ionic surfactants, and was the lowest in the control(P<0.05). In SEM observation, rumen microbial population attached on rice straw particle was less with addition of ionic surfactants than the control. In conclusion we could not found any positive effects of negative- and positive- charged surfactants on rumunal fermentation characteristics and rumen microbial growth rates.

EFFECT OF CHLORHEXIDINE ON MICROTENSILE BOND STRENGTH OF DENTIN BONDING SYSTEMS (Chlorhexidine 처리가 상아질 접착제의 미세인장결합강도에 미치는 영향)

  • Oh, Eun-Hwa;Choi, Kyoung-Kyu;Kim, Jong-Ryul;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.148-161
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of chlorhexidine (CHX) on microtensile bond strength (${\mu}TBS$) of dentin bonding systems. Dentin collagenolytic and gelatinolytic activities can be suppressed by protease inhibitors, indicating that MMPs (Matrix metalloproteinases) inhibition could be beneficial in the preservation of hybrid layers. Chlorhexidine (CHX) is known as an inhibitor of MMPs activity in vitro. The experiment was proceeded as follows: At first, flat occlusal surfaces were prepared on mid-coronal dentin of extracted third molars. GI (Glass Ionomer) group was treated with dentin conditioner, and then, applied with 2 % CHX. Both SM (Scotchbond Multipurpose) and SB (Single Bond) group were applied with CHX after acid-etched with 37% phosphoric acid. TS (Clearfil Tri-S) group was applied with CHX, and then, with adhesives. Hybrid composite Z-250 and resin-modified glass ionomer Fuji-II LC was built up on experimental dentin surfaces. Half of them were subjected to 10,000 thermocycle, while the others were tested immediately. With the resulting data, statistically two-way ANOVA was performed to assess the ${\mu}TBS$ before and after thermo cycling and the effect of CHX. All statistical tests were carried out at the 95 % level of confidence. The failure mode of the testing samples was observed under a scanning electron microscopy (SEM). Within limited results, the results of this study were as follows; 1. In all experimental groups applied with 2 % chlorhexidine, the microtensile bond strength increased, and thermo cycling decreased the micro tensile bond strength (P > 0.05). 2. Compared to the thermocycling groups without chlorhexidine, those with both thermocycling and chlorhexidine showed higher microtensile bond strength, and there was significant difference especially in GI and TS groups. 3. SEM analysis of failure mode distribution revealed the adhesive failure at hybrid layer in most of the specimen. and the shift of the failure site from bottom to top of the hybrid layer with chlorhexidine groups. 2 % chlorhexidine application after acid-etching proved to preserve the durability of the hybrid layer and microtensile bond strength of dentin bonding systems.

Identification of Active Agents for Reductive Dechlorination in Cement/Fe(II) Systems (시멘트와 Fe(II)을 이용한 환원성 탈염소화반응의 유효반응성분 규명)

  • Kim, Hong-Seok;Lee, Yu-Jung;Kim, Ha-Yan;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.35-42
    • /
    • 2006
  • Experimental study was conducted to identify the active agent for reductive dechlorination of TCE in cement/Fe(II) systems. Several potential materials-hematite (${\alpha}-Fe_2O_3$), lepidocrocite (${\gamma}$-FeOOH), akaganeite (${\beta}$-FeOOH), ettringite ($Ca_6Al_2(SO_4)_3(OH)_{12}$)-that are cement components or parts of cement hydrates were tested if they could act as reducing agents by conducting TCE degradation experiments. From the initial degradation experiments, hematite was selected as a potential active agent. The pseudo-first-order degradation rate constant ($k\;=\;0.637\;day^{-1}$) for the system containing 200 mM Fe(II), hematite and CaO was close to that ($k\;=\;0.645\;day^{-1}$) obtained from the system containing cement and 200 mM Fe(II). CaO, which was originally added to simulate pH of the cement/Fe(II) system, was found to play an important role in degradation reactions. The reactivity of the hematite/CaO/Fe(II) system initially increased with increase of CaO dosage. However, the tendency declined in the higher CaO dosage region, implying a saturation type of behavior. The SEM analysis revealed that the hexagonal plane-shaped crystals were formed during the reaction with increasing degradation efficiency, which was brought about by increasing the CaO dosage. It was suspected that the crystals could be portlandite or green rust ($SO_4$) or Friedel's salt. The XRD analysis of the same sample identified the peaks of hematite, magnetite/maghemite, green rust ($SO_4$). Either instrumental analysis predicted the presence of the green rust ($SO_4$). Therefore, the green rust ($SO_4$) would potentially be a reactive agent for reductive dechlorination in cement/Fe(II) systems.

Antimicrobial effect of toothbrush with light emitting diode on dental biofilm attached to zirconia surface: an in vitro study (지르코니아 표면에 부착된 바이오필름에 대한 LED 치솔의 항균효과)

  • Park, Jong Hew;Kim, Yong-Gun;Um, Heung-Sik;Lee, Si Young;Lee, Jae-Kwan;Chang, Beom-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.160-169
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the antimicrobial effects of a toothbrush with light-emitting diodes (LEDs) on periodontitis-associated dental biofilm attached to a zirconia surface by static and dynamic methods. Materials and Methods: Zirconia disks (12 mm diameter, 2.5 mm thickness) were inserted into a 24-well plate (static method) or inside a Center for Disease Control and Prevention (CDC) biofilm reactor (dynamic method) to form dental biofilms using Streptococcus gordonii and Fusobacterium nucleatum. The disks with biofilm were subdivided into five treatment groups-control, commercial photodynamic therapy (PDT), toothbrush alone (B), brush with LED (BL), and brush with LED+erythrosine (BLE). After treatment, the disks were agitated to detach the bacteria, and the resulting solutions were spread directly on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy (SEM) was performed to visualize alterations in bacterial morphology. Results: No significant difference in biofilm formation was observed between dynamic and static methods. A significant difference was observed in the number of viable bacteria between the control and all experimental groups (P < 0.05). The percentage of bacterial reduction in the BLE group was significantly higher than in the other treated groups (P < 0.05). SEM revealed damaged bacterial cell walls in the PDT, BL, and BLE groups, but intact cell walls in the control and B groups. Conclusion: The findings suggest that an LED toothbrush with erythrosine is more effective than other treatments in reducing the viability of periodontitis-associated bacteria attached to zirconia in vitro.

Characterization of Synthesized Carbonate and Sulfate Green Rusts: Formation Mechanisms and Physicochemical Properties (합성된 탄산염 및 황산염 그린 러스트의 형성 메커니즘과 이화학적 특성 규명)

  • Lee, Seon Yong;Choi, Su-Yeon;Chang, Bongsu;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.111-123
    • /
    • 2022
  • Carbonate green rust (CGR) and sulfate green rust (SGR) commonly occur in nature. In this study, CGR and SGR were synthesized through co-precipitation, and their formation mechanisms and physicochemical properties were investigated. X-ray diffraction (XRD) and Rietveld refinement showed both CGR and SGR with layered double hydroxide structure were successfully synthesized without any secondary phases under each synthetic condition. Refined structural parameters (unit cell) for two green rusts were a (=b) = 3.17 Å and c = 22.52 Å for CGR and a (=b) = 5.50 Å and c = 10.97 Å for SGR with the crystallite size 57.8 nm in diameter from (003) reflection and 40.1 nm from (001) reflections, respectively. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) results showed that both CGR and SGR had typical hexagonal plate-like crystal morphologies but their chemical composition is different in the content of C and S. In addition, Fourier transform infrared (FT-IR) spectroscopy analysis revealed that carbonate (CO32-) and sulfate (SO42-) molecules were occupied as interlayer anions of CGR and SGR, respectively. These SEM/EDS and FT-IR results were in good agreement with XRD results. Changes in the solution chemistry (i.e., pH, Eh and residual iron concentrations (Fe(II):Fe(III)) of the mixed solution) were observed as a function of the injection time of hydroxyl ion (OH-) into the iron solution. Three different stages were observed in the formation of both CGR and SGR; precursor, intermediator, and green rust in the formation of both CGR and SGR. This study provides co-precipitation methods for CGR and SGR in a way of the stable synthesis. In addition, our findings for the formation mechanisms of the two green rusts and their physicochemical properties will provide crucial information with researches and industrials in utilizing green rust.

Malacological Studies on Parafossarulus manchouricus(Gastropoda: Prosobranchia) in Korea (한국산(韓國産) 왜우렁(Parafossarulus manchouricus)의 패류학적(貝類學的) 연구(硏究))

  • Chung, Pyung-Rim
    • The Korean Journal of Malacology
    • /
    • v.1 no.1
    • /
    • pp.24-50
    • /
    • 1985
  • Five different populations of Parafossarulus manchouricus (Chongpyung, Chinju and Kunsan, Korea; and Japan and Taiwan), a population of Bitbynia (Gabbia) misella (Gongju, Korea) and two different populations of Bithynta tentaculata (Michigan, U.S.A. and Bodensee, Germany) were compared in regard to eff-laying characteristics, morphology, chromosome cytology, natural infections of parasites and ecology of habitats. A satisfactory culture method was devised for laboratory rearing of the snails. Tropical fish food (Terra SML) and powdered green leaves (Ceralife) were used as the main food sources for the snails. Benthic diatoms such as Navicula and Gomphonema from the periphyton were also essential for satisfactory growth, especially for the baby snails. The aquaria were stabilized with small stones from a local stream. Young P. manchouricus snails grew to adult size in about 54 days after hatching. They laid eggs 150-156 days after hatching. The whole cycle (birth to egg-laying) took approximately 5 months. The three species of bithyniid snails are iteroparous and lay eggs once a year. There were no major morphological differences in the shells of genera or subgenera studied here. They did exhibit the following rather minor differences. The shell of Parafossarulus has spirally raised ridges, and its apex is usually eroded; the other two genera lack these characteristics. The shell of B. (Gabbia) misella is small, nor exceeding 7.5 mm in length, while the shells of the other two species are larger, being more than 10 mm in length. Scanning electron microscopy (SEM) of the protoconch of P. manchouricus reveals nearly smooth sculpture with small, low, spiral wrinkles. This sculpture is quite different from that of the Hydrobiidae, a family to which the bithyniids are frequently assigned. Scanning electron microscopy of the radulae of the three bithyniid species showed that their radular morphologies are very similar, but there are some small differences, which may be species-specific. There were some statistical differences in shell heights between the Korean and the other populations of P. manchouricus, and between this species and the other two bithyniids as well. The shell differences between the several populations of Korean P. manchouricus may be related to environment. Edtails of the chromosome cycle of these bithyniid snails are similar to those reported for other snails. No specific differences were observed in the chromosome cycle between the various species and populations of snails employed in this study. Reporred for the first time in molluscs are two darkly stained "nucleolar organizers" during pachyterne stages of meiosis. Two different chromosome numbers were observed in the three bithyniid species: n=17 in B. tentaculata and P. manchouricus, and n=18 in B. (G.) misella. no sex chromosomes or supernumerary chromosomes were seen. There were no morphological differences in karyotypes of three Korean strains of P. manchouricus. The infection rates of cercariae of Clonorchis sinensis in Chinju and Kunsan strains of P. manchouricus were 0.14% and 1.25%, respectively. However, Clonorchis cercariae were found in Chongpyung strain of P. manchouriceu and Gongju strain of B. (G.) misella. The habitats of P. manchouricus around Jinyang Lake were relatively clean without any heavy pollution of aquatic microorganisms and organic materials during the period of this study. The levels of dissolved oxygen (D.O.) and biochemical oxygen demand (B.O.D.) of the water specimens sampled from the study areas ranged from 6.0 to 9.6 ppm and from 0.4 to 1.6 ppm, respectively. Eight metalic constituents from the water samples were also assayed, and all metalic ions detercted were remarkably low below the legal criteria. However, calcium ion in the water samples from the habitats of P. manchouricus was considerably higher than others.

  • PDF

Developing a Dental Unit Waterline Model Using General Laboratory Equipments (실험실 일반 장비를 이용한 치과용 유니트 수관 모델 개발)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.16 no.4
    • /
    • pp.284-292
    • /
    • 2016
  • Water supplied through dental unit waterlines (DUWLs) has been shown to contain high number of bacteria. To reduce the contamination of DUWLs, it is essential to develop effective disinfectants. It is, however, difficulty to obtain proper DUWL samples for studies. The purpose of this study was to establish a simple laboratory model for reproducing DUWL biofilms. The bacteria obtained from DUWLs were cultured in R2A liquid medium for 10 days, and then stored at $-70^{\circ}C$. This stock was inoculated into R2A liquid medium and incubated in batch mode. After 5 days of culturing, it was inoculated into the biofilm formation model developed in this study. Our biofilm formation model comprised of a beaker containing R2A liquid medium and five glass rods attached to DUWL polyurethane tubing. Biofilm was allowed to form on the stir plate and the medium was replaced every 2 days. After 4 days of biofilm formation in the laboratory model, biofilm thickness, morphological characteristics and distribution of the composing bacteria were examined by confocal laser microscopy and scanning electron microscopy. The mean of biofilm accumulation was $4.68{\times}10^4$ colony forming unit/$cm^2$ and its thickness was $10{\sim}14{\mu}m$. In our laboratory model, thick bacterial lumps were observed in some parts of the tubing. To test the suitability of this biofilm model system, the effectiveness of disinfectants such as sodium hypochlorite, hydrogen peroxide, and chlorhexidine, was examined by their application to the biofilm formed in our model. Lower concentrations of disinfectants were less effective in reducing the count of bacteria constituting the biofilm. These results showed that our DUWL biofilm laboratory model was appropriate for comparison of disinfectant effects. Our laboratory model is expected to be useful for various other purposes in further studies.