• 제목/요약/키워드: Scanning Confocal Microscope

검색결과 198건 처리시간 0.03초

Flow Visualization in Microchannel Using Confocal Scanning Microscope (공초점 주사현미경을 통한 미세 유로에서의 유동 가시화)

  • Chang Jun Keun;Park Sung-Jin;Kim Jung Kyung;Han Dong Chul
    • Journal of the Korean Society of Visualization
    • /
    • 제1권1호
    • /
    • pp.28-33
    • /
    • 2003
  • This paper presents the visualization method in which 3-dimensional(3D) microchannel flow can be detected using a confocal scanning microscope. By soft-lithography, we fabricated various Bio-MEMS(Micro Electro-Mechanical System) devices such as a disposable microchip for a flow cytometer and a micro-mixer, which have 3D structures. Injecting aqueous fluorescent solution in the microfluidic devices, we measured the flow in a steady state by the confocal scanning microscope. At first, we explain the principle of the confocal scanning microscope. And then we show the results from 3D visualization of microscopic flow structures using the confocal scanning microscope.

  • PDF

Signal increasing method in confocal scanning microscopy in fluorescence mode using curved mirror

  • Kang, Dong-kyun;Seo, Jung-woo;Gweon, Dae-gab
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.99.3-99
    • /
    • 2001
  • In fluorescence mode confocal scanning microscope, level of detected signal is very low. In object scanning type confocal scanning microscope, the additional optical system with objective lens and plane mirror was proposed to increase signal intensity, but there was none for beam scanning type confocal scanning microscope. We propose reflecting optical systems which improve signal intensity in beam scanning type confocal scanning microscope. We choose one of the proposed optical systems and design the optical system, i.e., select optical components and assign distances between the selected components. To design the optical system, we use finite ray tracing method and make cost function to be minimized.

  • PDF

Scanning confocal microscope using a quad-detector (4분할 photodiode를 이용한 scanning confocal microscope)

  • 유석진;김수철;이진서;권남익
    • Korean Journal of Optics and Photonics
    • /
    • 제8권2호
    • /
    • pp.165-168
    • /
    • 1997
  • We have constructed a scanning confocal microscope using a 780 nm semiconductor laser, an actuator of a compact disk player and a quad-detector. This device detects heights and characteristics of a surface. The laser focus was located at the surface of a sample by using the error signal obtained by a quad-dector, and the current supplied to the actuator for lens was displayed as a height. The materials of a surface were classified according to reflected total intensities and was displayed by different color in a monitor. The device has very samll dimensions of 30 mm$\times$20 mm$\times$20 mm and scan field is 1.6 mm$\times$1.6mm. We obtained two images, one using only reflected light and the other using an error signal from a quad-detector and compared these two images.

  • PDF

Error Analysis and Alignment Tolerancing for Confocal Scanning Microscope using Monte Carlo Method (Monte Carlo 방법을 이용한 공초점 주사 현미경의 오차 분석과 정렬 공차 할당에 관한 연구)

  • 유홍기;강동균;이승우;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제21권2호
    • /
    • pp.92-99
    • /
    • 2004
  • The errors can cause the serious loss of the performance of a precision machine system. In this paper, we proposed the method of allocating the alignment tolerances of the parts and applied this method to get the optimal tolerances of a Confocal Scanning Microscope. In general, tight tolerances are required to maintain the performance of a system, but a high cost of manufacturing and assembling is required to preserve the tight tolerances. The purpose of allocating the optimal tolerances is minimizing the cost while keeping the high performance of the system. In the optimal problem, we maximized the tolerances while maintaining the performance requirements. The Monte Carlo Method, a statistical simulation method, is used in tolerance analysis. Alignment tolerances of optical components of the confocal scanning microscope are optimized to minimize the cost and to maintain the observation performance of the microscope. We can also apply this method to the other precision machine system.

Surface measurement using Confocal principle (공초점 원리를 이용한 표면 현상 측정)

  • 송대호;유원제;강영준;김경석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.51-54
    • /
    • 2000
  • The traditional surface measuring method using confocal principle requires much time to measure an object surface since it is a scanning tool. In this paper, the upgraded confocal microscope is introduced. It is also a scanning tool but it requires 2D-scanning while the traditional one requires 3D-scanning. It means the time for measuring is considerably reduced. In addition, the measuring system is configured to increase the efficiency of beam. He-Ne laser whose frequency is 632.8nm is used for the laser source. An example of measuring result through the upgraded confocal microscope is showed.

  • PDF

Scanning confocal microscope by direct oscillation of an optical fiber (광섬유의 직접 구동에 의한 공초점 현미경)

  • 김종배;류광현;박두성;노정은;권남익
    • Korean Journal of Optics and Photonics
    • /
    • 제14권1호
    • /
    • pp.80-84
    • /
    • 2003
  • We have constructed a scanning confocal microscope by directly oscillating an optical fiber in two different ways. Either a piezoelectric transducer or a tuning fork was used for the oscillation. Six frames of $640{\times}480$ pixel image were obtained in a second with piezoelectric oscillation and only one image of the same size was obtained in a second with tuning fork oscillation. Oscillation of optical fiber did not cause amy distortion of confocal images.

Scanning confocal microscope of a surface following effect using a quad-detector (4분할 광검출기를 이용한 표면 추적 효과의 공초점 현미경)

  • 김수철;송장섭;권남익
    • Korean Journal of Optics and Photonics
    • /
    • 제9권1호
    • /
    • pp.1-4
    • /
    • 1998
  • A compact scanning confocal microscope has been constructed using a quad-detector in a CD-player. The variation of error signal on depth which obtained by a quad-detector is used in the scanning confocal microscope. Bipolar error signals, which is sensitive near a focus, give a surface following effect whiout following the surface. In the case of small depth difference, the difference of materials through the reflection signal has been identified. The image which uses reflection signal only, has been obtained with the same setup. And, the results obtained in two different way were compared and analyzed.

  • PDF