• Title/Summary/Keyword: Scanned Line Image

Search Result 45, Processing Time 0.022 seconds

A Low-Complexity Image Compression Method Which Reduces Memories Used in Multimedia Processor Implementation (멀티미디어 프로세서 구현에 사용되는 메모리를 줄이기 위한 저 복잡도의 영상 압축 알고리즘)

  • Jung Su-Woon;Kim I-Rang;Lee Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • This paper presents an efficient image compression method for memory reduction in multimedia processor which can be simply implemented in hardware and provides high performance. The multimedia processor, which includes processing of high-resolution images and videos, requires large memories: they are external frame memories to store frames and internal line memories for implementing some linear filters. If we can reduce those memories by adopting a simple compression method in multimedia processor, it will strengthen its cost competitiveness. There exist many standards for efficiently compressing images and videos. However, those standards are too complex for our purpose and most of them are 2-D block-based methods, which do not support raster scanned input and output. In this paper, we propose a low-complexity compression method which has good performance, can be implemented with simple hardware logic, and supports raster scan. We have adopted 1${\times}$8 Hadamard transform for simple implementation in hardware and compression efficiency. After analyzing the coefficients, we applied an adaptive thresholding and quantization. We provide some simulation results to analyze its performance and compare with the existing methods. We also provide its hardware implementation results and discuss about cost reduction effects when applied in implementing a multimedia processor.

Analysis of the Range Verification of Proton using PET-CT (Off-line PET-CT를 이용한 양성자치료에서의 Range 검증)

  • Jang, Joon Young;Hong, Gun Chul;Park, Sey Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2017
  • Purpose: The proton used in proton therapy has a characteristic of giving a small dose to the normal tissue in front of the tumor site while forming a Bragg peak at the cancer tissue site and giving up the maximum dose and disappearing immediately. It is very important to verify the proton arrival position. In this study, we used the off-line PET CT method to measure the distribution of positron emitted from nucleons such as 11C (half-life = 20 min), 150 (half-life = 2 min) and 13N The range and distal falloff point of the proton were verified by measurement. Materials and Methods: In the IEC 2001 Body Phantom, 37 mm, 28 mm, and 22 mm spheres were inserted. The phantom was filled with water to obtain a CT image for each sphere size. To verify the proton range and distal falloff points, As a treatment planning system, SOBP were set at 46 mm on 37 mm sphere, 37 mm on 28 mm, and 33 mm on 22 mm sphere for each sphere size. The proton was scanned in the same center with a single beam of Gantry 0 degree by the scanning method. The phantom was scanned using PET-CT equipment. In the PET-CT image acquisition method, 50 images were acquired per minute, four ROIs including the spheres in the phantom were set, and 10 images were reconstructed. The activity profile according to the depth was compared to the dose profile according to the sphere size established in the treatment plan Results: The PET-CT activity profile decreased rapidly at the distal falloff position in the 37 mm, 28 mm, and 22 mm spheres as well as the dose profile. However, in the SOBP section, which is a range for evaluating the range, the results in the proximal part of the activity profile are different from those of the dose profile, and the distal falloff position is compared with the proton therapy plan and PET-CT As a result, the maximum difference of 1.4 mm at the 50 % point of the Max dose, 1.1 mm at the 45 % point at the 28 mm sphere, and the difference at the 22 mm sphere at the maximum point of 1.2 mm were all less than 1.5 mm in the 37 mm sphere. Conclusion: To maximize the advantages of proton therapy, it is very important to verify the range of the proton beam. In this study, the proton range was confirmed by the SOBP and the distal falloff position of the proton beam using PET-CT. As a result, the difference of the distally falloff position between the activity distribution measured by PET-CT and the proton therapy plan was 1.4 mm, respectively. This may be used as a reference for the dose margin applied in the proton therapy plan.

  • PDF

Clinical convergence angle and rounding radius on tooth preparation for zirconia all-ceramic crown (지르코니아 전부도재관 지대치 삭제시 축면 경사각과 만곡 반경에 대한 조사)

  • Kim, Hye-Eun;Woo, Yi-Hyung;Pae, Ah-Ran;Kim, Hyeong-Seob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • Purpose: This article attempted to examine how teeth for restoration is made in a clinical practice and utilize it as future educational material of teeth formation and basic data for additional research. Materials and methods: This experiment investigated the models sent to milling center for production of zirconia crowns. After scanned with Lava CAD/CAM System (3M ESPE, Seefeld, Germany), they are measured on 'ImageJ (version 1.32j, National Institutes of Health, USA)' program and compared and analyzed. Convergence angle from mesio-distal surfaces and bucco-lingual surfaces of each teeth are measured. Also, bucco-lingual diameter of the region lowered as much as 0.4 mm from incisal edge in anterior teeth except canines.(This measure is defined as the Peak 0.4) The analysis of data between each group was conducted by Windows SPSS statistic program, and was proved significant on 95% confidence level by independent t-test, one-way ANOVA and multiple analysis (Sheff${\'{e}}$ test). Results: The mean value of convergence angle was $18.67^{\circ}$ It is ranked as molar ($26.70^{\circ}$) > premolar ($16.87^{\circ}$) > anterior teeth ($14.81^{\circ}$) in the order of mesio-distal convergence angle; anterior teeth ($22.32^{\circ}$) > molar ($20.93^{\circ}$) > premolar ($15.41^{\circ}$) in the order of bucco-lingual convergence angle. The mean value of Peak 0.4 was 1.18 mm. Conclusion: Convergence angle of abutment of zirconia all ceramic crown has difference depending on the location in the arch. Due to the nature of production of zirconia all ceramic crown, convergence angle of abutment and line angle finishing degree can have an effect on internal suitability of restoration.

Development and Performance Evaluation of an Animal SPECT System Using Philips ARGUS Gamma Camera and Pinhole Collimator (Philips ARGUS 감마카메라와 바늘구멍조준기를 이용한 소동물 SPECT 시스템의 개발 및 성능 평가)

  • Kim, Joong-Hyun;Lee, Jae-Sung;Kim, Jin-Su;Lee, Byeong-Il;Kim, Soo-Mee;Choung, In-Soon;Kim, Yu-Kyeong;Lee, Won-Woo;Kim, Sang-Eun;Chung, June-Key;Lee, Myung-Chul;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.445-455
    • /
    • 2005
  • Purpose: We developed an animal SPECT system using clinical Philips ARGUS scintillation camera and pinhole collimator with specially manufactured small apertures. In this study, we evaluated the physical characteristics of this system and biological feasibility for animal experiments. Materials and Methods: Rotating station for small animals using a step motor and operating software were developed. Pinhole inserts with small apertures (diameter of 0.5, 1.0, and 2.0 mm) were manufactured and physical parameters including planar spatial resolution and sensitivity and reconstructed resolution were measured for some apertures. In order to measure the size of the usable field of view according to the distance from the focal point, manufactured multiple line sources separated with the same distance were scanned and numbers of lines within the field of view were counted. Using a Tc-99m line source with 0.5 mm diameter and 12 mm length placed in the exact center of field of view, planar spatial resolution according to the distance was measured. Calibration factor to obtain FWHM values in 'mm' unit was calculated from the planar image of two separated line sources. Te-99m point source with i mm diameter was used for the measurement of system sensitivity. In addition, SPECT data of micro phantom with cold and hot line inserts and rat brain after intravenous injection of [I-123]FP-CIT were acquired and reconstructed using filtered back protection reconstruction algorithm for pinhole collimator. Results: Size of usable field of view was proportional to the distance from the focal point and their relationship could be fitted into a linear equation (y=1.4x+0.5, x: distance). System sensitivity and planar spatial resolution at 3 cm measured using 1.0 mm aperture was 71 cps/MBq and 1.24 mm, respectively. In the SPECT image of rat brain with [I-123]FP-CIT acquired using 1.0 mm aperture, the distribution of dopamine transporter in the striatum was well identified in each hemisphere. Conclusion: We verified that this new animal SPECT system with the Phlilps ARGUS scanner and small apertures had sufficient performance for small animal imaging.

Evaluation of SharpIR Reconstruction Method in PET/CT (PET/CT 검사에서 SharpIR 재구성 방법의 평가)

  • Kim, Jung-Yul;Kang, Chun-Koo;Park, Hoon-Hee;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • Purpose : In conventional PET image reconstruction, iterative reconstruction methods such as OSEM (Ordered Subsets Expectation Maximization) have now generally replaced traditional analytic methods such as filtered back-projection. This includes improvements in components of the system model geometry, fully 3D scatter and low noise randoms estimates. SharpIR algorithm is to improve PET image contrast to noise by incorporating information about the PET detector response into the 3D iterative reconstruction algorithm. The aim of this study is evaluation of SharpIR reconstruction method in PET/CT. Materials and Methods: For the measurement of detector response for the spatial resolution, a capillary tube was filled with FDG and scanned at varying distances from the iso-center (5, 10, 15, 20 cm). To measure image quality for contrast recovery, the NEMA IEC body phantom (Data Spectrum Corporation, Hillsborough, NC) with diameters of 1, 13, 17 and 22 for simulating hot and 28 and 37 mm for simulating cold lesions. A solution of 5.4 kBq/mL of $^{18}F$-FDG in water was used as a radioactive background obtaining a lesion of background ratio of 4.0. Images were reconstructed with VUE point HD and VUE point HD using SharpIR reconstruction algorithm. For the clinical evaluation, a whole body FDG scan acquired and to demonstrate contrast recovery, ROIs were drawn on a metabolic hot spot and also on a uniform region of the liver. Images were reconstructed with function of varying iteration number (1~10). Results: The result of increases axial distance from iso-center, full width at half maximum (FWHM) is also increasing in VUE point HD reconstruction image. Even showed an increasing distances constant FWHM. VUE point HD with SharpIR than VUE point HD showed improves contrast recovery in phantom and clinical study. Conclusion: By incorporating more information about the detector system response, the SharpIR algorithm improves the accuracy of underlying model used in VUE point HD. SharpIR algorithm improve spatial resolution for a line source in air, and improves contrast recovery at equivalent noise levels in phantoms and clinical studies. Therefore, SharpIR algorithm can be applied as through a longitudinal study will be useful in clinical.

  • PDF