• Title/Summary/Keyword: Scan Testing

Search Result 228, Processing Time 0.022 seconds

An Effective Multiple Transition Pattern Generation Method for Signal Integrity Test on Interconnections (Signal Integrity 연결선 테스트용 다중천이 패턴 생성방안)

  • Kim, Yong-Joon;Yang, Myung-Hoon;Park, Young-Kyu;Lee, Dae-Yeal;Yoon, Hyun-Jun;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • Semiconductor testing area challenges many testing issues due to the minimization and ultra high performance of current semiconductors. Among these issues, signal integrity test on interconnections must be solved for highly integrated circuits like SoC. In this paper, we propose an effective pattern application method for signal integrity test on interconnects. Proposed method can be applied by using boundary scan architecture and very efficient test can be preceded with pretty short test time.

A Study on the Strength Evaluation of Unidirectional Carbon Fiber Reinforced Plastics by Nondestructive Method (일방성(一方性) 복함재료(複合材料)의 파괴거동(破壞擧動) 및 강도평가(强度評價)에 관(關)한 연구(硏究))

  • Chang, H.K.;Lee, J.S.;Cho, K.S.;Lee, S.H.;Park, E.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.42-47
    • /
    • 1988
  • The off-axis tensile strength of the unidirectional carbon fiber reinforced plastic and the residual strength of impact damaged CFRP were measured and compared with the stress wave factor (SWF) of the specimens. The SWF values were measured to be decreased with the strength reduction in both cases and found to be useful for the nondestructive strength evaluation of unidirectional CFRP. The failure behaviour of the unidirectional CFRP during off-axis tensile testing was also monitored by acoustic emission(AE) method. The AE energy release showed the characteristic feature depending on the off-axis angle and this result was analyzed to be caused by the difference of the expected failure mode depending on the off-axis angle. The failure mode of CFRP was found to be analyzed by investigation of the peak amplitude distribution of AE.

  • PDF

Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System (소형 CW Sub-THz 이미징 시스템을 이용한 물체의 비파괴 이미징)

  • Jang, Jin-Seok;Kwon, Il-Bub;Yoon, Dong-Jin;Seo, Dae-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.352-358
    • /
    • 2010
  • This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave.

Reconstructing Flaw Image Using Dataset of Full Matrix Capture Technique (Full Matrix Capture 데이터를 이용한 균열 영상화)

  • Lee, Tae-Hun;Kim, Yong-Sik;Lee, Jeong-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.13-20
    • /
    • 2017
  • A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

Characterization of Water Absorption by CFRP Using Air-Coupled Ultrasonic Testing (공기결합 초음파탐상에 의한 CFRP 복합재의 흡습 특성 평가)

  • Lee, Joo-Min;Lee, Joo-Sung;Kim, Yong-Kwon;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.155-164
    • /
    • 2014
  • Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at $75^{\circ}C$ for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

Triangle Method for Fast Face Detection on the Wild

  • Malikovich, Karimov Madjit;Akhmatovich, Tashev Komil;ugli, Islomov Shahboz Zokir;Nizomovich, Mavlonov Obid
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • There are a lot of problems in the face detection area. One of them is detecting faces by facial features and reducing number of the false negatives and positions. This paper is directed to solve this problem by the proposed triangle method. Also, this paper explans cascades, Haar-like features, AdaBoost, HOG. We propose a scheme using 12-net, 24-net, 48-net to scan images and improve efficiency. Using triangle method for frontal pose, B and B1 methods for other poses in neural networks are proposed.

Debugging of TTP(Train Tilting Processor) In Use The Embedded System (임베디드 시스템을 이용한 틸팅 제어 시스템(T.T.P)에 관한 연구)

  • Song, Yong-Soo;Shin, Seung-Kwon;Lee, Su-Gil;Han, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2625-2627
    • /
    • 2004
  • Recently many technology of the T.T.P.(Train Tilting Processor) has been introduced for an efficient real-time operating system. but the problems of testing increasing complex digital integrated system continue to challenge the design and test community. Design main processor part that can be used on railroad synthesis control part by ARM CORE chip.

  • PDF

Integrity evaluations of bogie frame using ultrasonic-fractography analysis (초음파-파면해석에 의한 대차 프레임의 건전성 평가)

  • 윤인식;권성태;정우현;박덕신;김경국
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.461-467
    • /
    • 2000
  • This study proposes the integrity evaluation of bogie frame using ultrasonic waves-fractography analysis. Analysis objectives in this study are to investigate fracture planes of damaged zone by the A-scan method. The surface condition of fracture plane shows degree of degradation by stress concentration. The detection of the natural defects in bogie frame is performed using the characteristics of echodynamic pattern in ultrasonic signal. Results of ultrasonic testing agree fairly well with those of actual fracture plane. In quantitative fractography analysis, microstructures of actual fracture plane turned out to be intergranular and transgranular fracture, Proposed ultrasonic-fractography analysis in this study can be used for the integrity evaluation of the bogie frame

  • PDF

The Analysis of important factors for improving the performance of DIFM Receiver (DIFM 수신기의 성능향상 결정요소 분석)

  • Ku, Ki-Young;Choi, Hyun-Chul;An, Hyeon-Kwan;Park, Cheol-Sun;Lim, Joong-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.198-202
    • /
    • 2003
  • An engineer prefers DIFM receiver which is superior to instantaneous response rather than superheterodyne receiver which has a scan rate in normal wide band receiver designing. But DIFM receiver has weak point in sensitivity and continuous wave signal because of special environments. In this paper we propose the method which is certificated through simulation and prototype testing to improve sensitivity of DIFM receiver. And we analyze the important factors of DIFM receiver from our results.

  • PDF

Kinematics Analysis of a 5-Axis Ultrasonic Inspection Equipment (5축 초음파 검사장비의 기구학 해석)

  • Han, Myung-Chul;Sung, Chang-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.89-96
    • /
    • 2015
  • In this paper, it is studied that kinematic analysis of a 5-axis ultrasonic inspection equipment. The equipment is comprised of three straight axes and two rotary axes. With features of ultrasonic, the transmitter and receiver of the equipment are vertical to a test surface, operating at regular intervals. To perform this well, the motions of every link should be found on the based of kinematic analysis of the equipment. We chose starting point for testing and defined relations among all links through transformation of coordinates. For double curvature-shaped test object, we generated test paths. To follow these, we found motions of all links using inverse kinematics. By using Matlab/Simulink, simulator was developed, so that we could find out desired trajectories of main axes for a scan.