• 제목/요약/키워드: Scaled down model

검색결과 129건 처리시간 0.023초

Computational Flow Analysis and Preliminary Measurement for the CANDU-6 Moderator Tank Model (CANDU-6 감속재 탱크 모형의 유동장 전산해석 및 예비측정)

  • Cha, Jae Eun;Choi, Hwa Lim;Rhee, Bo Wook;Kim, Hyoung Tae
    • Journal of the Korean Society of Visualization
    • /
    • 제10권3호
    • /
    • pp.30-36
    • /
    • 2012
  • We are planning to construct a scaled-down moderator facility to simulate the CANDU-6 moderator circulation phenomena during steady state operating and accident conditions. In the present work a preliminary experiment using a 1/40 scaled-down moderator tank has been performed to investigate the anticipated problems of the flow visualization and measurement in the planning scaled-down moderator facility. We shortly describe CFD analysis result for the 1/40 scaled-down test model and the flow measurement techniques used for this test facility under isothermal flow conditions. The Particle Image Velocimetry (PIV) method is used to visualize and measure the velocity field of water in a transparent Plexiglas tank. Planar Laser Induced Fluorescence (PLIF) technique is used to evaluate the feasibility of temperature field measurement in the range of $20-40^{\circ}C$ of water temperature using an one-color method.

Design of A scale-down experimental model for SFR reactor vault cooling system performance analyses

  • Kim, Koung Moon;Hwang, Ji-Hwan;Wongwises, Somchai;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1611-1625
    • /
    • 2020
  • We propose a scaled-down experimental model of vertical air-natural convection channels by applying the modified Ishii-Kataoka scaling method with the assistance of numerical analyses to the Reactor Vault Cooling System (RVCS) of the Proto-type Gen-IV Sodium-cooled fast reactor (PGSFR) being developed in Korea. Two major non-dimensional numbers (modified Richardson and Friction number) from the momentum equation and Stanton number from the energy balance equation were identified to design the scaled-down experimental model to assimilate thermal-hydraulic behaviors of the natural convective air-cooling channel of RVCS. The ratios of the design parameters in the PGSFR RVCS between the prototype and the scaled-down model were determined by setting Richardson and Stanton number to be unity. The friction number which cannot be determined by the Ishii-Kataoka method was estimated by numerical analyses using the MARS-KS system code. The numerical analyses showed that the friction number with the form loss coefficient of 2.0 in the scale-down model would result in an acceptable prediction of the thermal-hydraulic behavior in RVCS. We also performed experimental benchmarking using the scaled-down model with the MARS-KS simulations to verify the appropriateness of the scale-down model, which demonstrated that the temperature rises and the average air flow velocity measured in the scale-down model.

Verification of Significancebetween Experiment Devices and Scaled-down Model for the Study of PSALI (PSALI 연구를 위한 실물대 실험 장치와 축소 모형간의 유의성 검증)

  • Lee, Jin-Sook;Kim, So-Yeon;Ha, Tae-Hyun;Jung, Young-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제25권12호
    • /
    • pp.11-20
    • /
    • 2011
  • PSALI is referred to the supplementary lighting for the interior lighting under the daily lighting situation, and pursuant to the pertinent regulations in energy savings design standard and others in recent architecture works, the importance thereof has been increasing gradually coupled with the energy performance index (EPI), energy savings plan and the like as well as expansion of submittal and implementation policies. However, this type of PSALI studies indeed have a number of limitations since it has surrounding environmental conditions in direction, season, region, climate, time, opening rate, window area ratio, actual index, reflection rate of finishing materials and others in the architecture work as well as frequent changes in interior lighting environment for variables in daily light volume flowing into the interior, and others. Therefore, this study has analyzed existing advance research cases to produce the actual-sized model and scaled-down model, and installed the artificial lighting of LED light source possible to reproduce with same capability on both models. As a result of comparison and analysis of the artificial lighting with the key light, it has certain level of error rate from the scaled down lighting device in certain rate and actual model butit was noticeably significant within specific scope.

Wind tunnel test for the 20% scaled down NREL wind turbine blade (NREL 풍력터빈 블레이드 20% 축소모델 풍동시험 결과)

  • Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Rho, Joohyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The 'NREL Phase VI' model with a 10.06m diameter was tested in the NASA Ames tunnel to make a reference data of the computational models. The test was conducted at the one rotational speed, blade tip speed 38m/s and the Reynolds number of the sectional airfoils in that test was around 1E6. The 1/5 scale down model of the 'NREL Phase VI' model was used in this paper to study the power characteristics in low Reynolds number region, 0.1E6 ~ 0.4E6 which is achievable range for the conventional wind tunnel facilities. The torque generated by the blade was directly measured by using the torque sensor installed in the rotating axis for a given wind speed and rotational speed. The power characteristics below the stall condition, lambda > 4, was presented in this paper. The power coefficient is very low in the condition below the Re. 0.2E6 and rapidly increases as the Re. increases. And it still increases but the variation is not so big in the condition above the Re. 0.3E6. This results shows that to study the performance of the wind turbine blade by using the scaled down model, the Re. should be larger than the 0.3E6.

  • PDF

Structural response relationship between scaled and prototype concrete load bearing systems using similarity requirements

  • Altunisik, Ahmet C.;Kalkan, Ebru;Basaga, Hasan B.
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.385-397
    • /
    • 2018
  • This study is focused on the investigation for similitude the requirements between prototype and scaled models to determine the structural behavior of concrete load bearing systems. The scaling concept has been utilized in many engineering branches, has been assisted to engineers and scientists for obtain the behavior of the prototype by using scaled model. The scaling can be done for two purposes, either scaling up or scaling down depending upon the application. Because, scaled down models are the experimentation on scaled models is cheaper than huge structures. These models also provide facilities for experimental work. Similarity relationships between systems are created either by field equations of the system or by dimensional analysis. Within this study, similarity relationships were obtained by both methods. The similarity relations obtained are applied to different load bearing systems and it is determined that the similarity relation is a general expression. In this study, as an example, column, frame, cantilever beam and simple beam are chosen and 1/2, 1/5 and 1/10 scales are applied. The results are compared with the analytical results which are obtained by creating of the finite element models with SAP2000 software of different scaled load bearing systems. The analysis results of all systems are examined and it is determined that the scale factors are constant depending on the scale types for different load bearing systems.

Analysis of Heat Loss Effect of Combustion in Closed Vessel (정적 연소실에서의 열 손실 해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • 제6권1호
    • /
    • pp.14-19
    • /
    • 2001
  • Interests and importance of down-scale combustor is increasing with the emerging need for miniaturized power source which is now a bottleneck of micro system development. But in down scaled combustor increased heat loss compared to thermal energy generation inhibits the usability and application of the device, so as a preliminary work of down scaled combustor fabrication. Modeling tool for the device should be established, in this study modeling approach of closed vessel combustion phenomena that can express heat loss effect and resulting quenching is proposed and the result is compared with experiment data. From this model heat loss effect following combustor scale down can be further understood, and further more design parameter and analysis tool can be obtained.

  • PDF

Thermodynamic Modeling of Heat Loss and Quenching in a Down Scaled Combustor (형상 축소된 연소기의 열손실 및 소염해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제26권7호
    • /
    • pp.919-926
    • /
    • 2002
  • Down scaled combustor undergoes increased heat loss that results in incomplete combustion or quenching of the flame as a consequence. Therefore, effect of enhanced heat loss should be understood to design a MEMS scale combustion devices. Existing combustion models are inadequate for micro combustors because they were developed for analysis of regular scale combustor where heat loss can be ignored during the flame propagation. In this research a combustion model is proposed in order to estimate the heat loss and predict quenching limit of flame in a down scaled combustor. Heat loss in the burned region is expressed in a convective form as a product of wall surface area, heat transfer coefficient and temperature difference. Comparison to the measurements showed satisfactory agreement of the pressure and temperature drop. Quenching is accounted for by introducing a correlation of quenching parameter and heat loss. The present model predicted burnt fraction of gases with reasonable accuracy and proved to be applicable in thermal design of a micro combustor.

A Study of Blasting Demolition by Scaled Model Test and PEC2D Analysis (축소모형실험 및 PFC2D해석에 따른 발파해체 거동분석)

  • 채희문;전석원
    • Tunnel and Underground Space
    • /
    • 제14권1호
    • /
    • pp.54-68
    • /
    • 2004
  • In this study, scaled model tests were performed on blasting demolition of reinforced concrete structures and the experimental results were analyzed in comparison with the results of numerical analysis. The tests were designed to induce a progressive collapse, and physical properties of the scaled model were determined using scale factors obtained ken dimension analysis. The scaled model structure was made of a mixture of plaster, sand and water at the ratio determined to yield the best scaled-down strength. Lead wire was used as a substitute for reinforcing bars. The scaled length was at the ratio of 1/10. Selecting the material and scaled factors was aimed at obtaining appropriately scaled-down strength. PFC2D (Particle Flow Code 2-Dimension) employing DEM (Distinct Element Method) was used for the numerical analysis. Blasting demolition of scaled 3-D plain concrete laymen structure was filmed and compared to results of numerical simulation. Despite the limits of 2-D simulation the resulting demolition behaviors were similar to each other. Based on the above experimental results in combination with bending test results of RC beam, numerical analysis was carried out to determine the blasting sequence and delay times. Scaled model test of RC structure resulted in remarkably similar collapse with the numerical results up to 900㎳ (mili-second).

Design of KUH Main Rotor Small-scaled Blade (KUH 주로터 축소 블레이드 설계)

  • Kim, Do-Hyung;Kim, Seung-Ho;Han, Jung-Ho
    • Aerospace Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.32-41
    • /
    • 2009
  • In this study, scale-down design of full-scale Korean Utility Helicopter (KUH) main rotor blade has been investigated. The scaled model system were designed for the measurement of aerodynamic performance, tip vortex and noise source. For the purpose of considering the same aerodynamic loads, the Mach-scale method has been applied. The Mach-scaled model has the same tip Mach number, and it also has the same normalized frequencies. That is, the Mach-scaled model is analogous to full-scale model in the view point of aerodynamics and structural dynamics. Aerodynamic scale-down process could be completed just by adjusting scaling dimensions and increasing rotating speed. In the field of structural dynamics, design process could be finished by confirming the rotating frequencies of the designed blade with the stiffness and inertial properties distributions produced by sectional design. In this study, small-scaled blade sectional design were performed by applying domestic composite prepregs and structural dynamic characteristics of designed model has been investigated.

  • PDF

MODAL CHARACTERISTIC ANALYSIS OF THE APR1400 NUCLEAR REACTOR INTERNALS FOR SEISMIC ANALYSIS

  • Park, Jong-Beom;Choi, Youngin;Lee, Sang-Jeong;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Park, Chan-Il
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.689-698
    • /
    • 2014
  • Reactor internals are sensitive to dynamic loads such as earthquakes and flow induced vibration. Thus, it is essential to identify the dynamic characteristics to evaluate the seismic integrity of the structures. However, a full-sized system is too large to perform modal experiments, making it difficult to extract data on its modal characteristics. In this research, we constructed a finite element model of the APR1400 reactor internals to identify their modal characteristics. The commercial reactor was selected to reflect the actual boundary conditions. Our FE model was constructed based on scale-similarity analysis and fluid-structure interaction investigations using a fabricated scaled-down model.