• Title/Summary/Keyword: Scaled Vehicle

Search Result 98, Processing Time 0.026 seconds

A Running Stability Test of 1/5 Scaled Bogie using Small-Scaled Derailment Simulator (소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험)

  • Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface optimization. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research using the small-scaled derailment simulator and the 1/5 scaled bogie has been conducted. In this paper, we did running stability test of 1/5 scaled bogie using small-scaled derailment simulator. Also, for the operation of the small scaled simulator, it is required to investigate the performance and characteristics of the simulator system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying the test results and understanding of the physical behavior of the dynamic system comprising the small- scaled derailment simulator and the 1/5 scaled bogie.

Low energy ultrasonic single beacon localization for testing of scaled model vehicle

  • Dubey, Awanish C.;Subramanian, V. Anantha;Kumar, V. Jagadeesh
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.391-407
    • /
    • 2019
  • Tracking the location (position) of a surface or underwater marine vehicle is important as part of guidance and navigation. While the Global Positioning System (GPS) works well in an open sea environment but its use is limited whenever testing scaled-down models of such vehicles in the laboratory environment. This paper presents the design, development and implementation of a low energy ultrasonic augmented single beacon-based localization technique suitable for such requirements. The strategy consists of applying Extended Kalman Filter (EKF) to achieve location tracking from basic dynamic distance measurements of the moving model from a fixed beacon, while on-board motion sensor measures heading angle and velocity. Iterative application of the Extended Kalman Filter yields x and y co-ordinate positions of the moving model. Tests performed on a free-running ship model in a wave basin facility of dimension 30 m by 30 m by 3 m water depth validate the proposed model. The test results show quick convergence with an error of few centimeters in the estimated position of the ship model. The proposed technique has application in the real field scenario by replacing the ultrasonic sensor with industrial grade long range acoustic modem. As compared with the existing systems such as LBL, SBL, USBL and others localization techniques, the proposed technique can save deployment cost and also cut the cost on number of acoustic modems involved.

Analysis of Car-Pedestrian Collisions Using Scaled Korean Dummy Models (한국인 체형을 가진 보행자와 차량의 충돌 해석)

  • Shin, Dong-Han;Kim, Kwang-Hoon;Son, Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.110-117
    • /
    • 2007
  • According to the pedestrian protection regulations of Europe and Japan, the head injury must not exceed a limitation in the defined test condition for the protection of pedestrians from a vehicle crash. However, it is difficult to evaluate the performance of protection because each regulation has different test conditions such as dummy, impact speed and so on. This circumstance needs the development of a model that describes the anthropometry of the crash victim with a sufficient accuracy. We constructed scaled pedestrian dummies using MADYSCALE. Simulations were performed for various crash speeds and pedestrian postures. The scaled Korean dummies and HybridIII dummies were used to compare the pedestrian dynamic behaviors and head injury criteria during the collision. The HIC values of scaled korean dummies were found to be higher than those of Hybrid III dummies. The impact for gait posture was less than that for standing.

An Analysis of Running Stability of 1/5 Small Scaled Bogie on Small-Scaled Derailment Simulator (소형탈선시뮬레이터상에서의 1/5 축소대차 주행안정성 해석)

  • Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung;Song, Moon-Shuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1413-1420
    • /
    • 2012
  • To predict the dynamics behavior, running stability, etc. of a railway vehicle and to understand its physical characteristics, analytical methods are used for the testing and manufacturing of a scale model along with numerical simulations in developed countries (England, France, Japan, etc.). The test of the dynamics characteristics of full-scale models is problematic in that it is expensive and time-consuming because an entire large-scale test plant needs to be constructed, difficulties are involved in the test configuration, etc. To overcome these problems, an analytical study involving dynamics tests and computer simulations using a scaled bogie model that applies the laws of similarity was carried out. In this study, we performed stability analysis on a 1/5 small scaled bogie for parameters such as the running speed and carbody weight by using an analysis model. Furthermore, we verified the reliability by using a small-scaled derailment simulator and examined the dynamic characteristic of the 1/5 small scaled bogie.

A Study on the Curving Performance of a Scaled Bogie on a Scaled Curve Track (축소 곡선 트랙상에서의 축소 대차 곡선주행특성 연구)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.613-618
    • /
    • 2007
  • The performance of the railway bogie is classified into the stability and the steering performance. Testing for the bogie stability is conducted on the roller rig, but testing for the bogie steering performance on test facility is very difficult, so the testing for the vehicle curving performance is conducted on the real curve track. Testing the railway bogie on the full scale test rig is desirable, but it caused many problems relating to test costs and test time. As a possible alternative to overcome these problems, a small scaled test rig is actively used in the field of bogie stability. Thus, in this paper, we have studied a scaled track to test the bogie steering performance. For this purpose, we designed the 1/5 scaled test track equivalent to radius 200 curve and confirmed the validity of the testing for the bogie steering performance on the sealed curve track through the testing using 1/5 scaled bogie.

A Running Stability Test of 1/5 Scaled Bogie Using Small Scale Derailment Simulator (소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2600-2608
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. As this paper, To predict the dynamic behavior of railway vehicle, we studied running stability test of 1/5 scaled bogie that similarity laws is applied using small scale derailment simulator. For the operation of the small scale derailment simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

Development of small-scaled Magnetically Levitated Train operation system (축소형 자기부상열차 운행 시스템 개발)

  • Sung, H.K.;Jung, B.S.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.256-258
    • /
    • 2004
  • It is not easy to apply new algorithm to the vehicle under driving test because the principle and moving characteristic of Magnetically Levitated Train(Maglev) developed in KIMM have been not easily analyzed yet. So, in this paper the small-scaled Maglev which can experiment economically and analyze moving-characteristic is proposed. Proposed small-scaled Maglev have the same principle and function as that of Maglev but it is smaller than real system at the ration of 1 to 7.

  • PDF

Design of a Small-scaled Superconducting LSM for the Very High Speed Railway Vehicle (레일방식 초고속열차 추진용 축소 초전도 LSM 설계 연구)

  • Park, Chan-Bae;Kim, Jae-Hee;Lss, Byung-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1602-1607
    • /
    • 2014
  • This paper deals with the design and property analysis of 7kW-class small-scaled superconducting Linear Synchronous Motor (LSM) and testing equipment for a number of performance pre-tests prior to the development of coreless-type superconducting LSM suitable for 600km/h very high speed train. First, the basic design and property analysis are conducted before developing a small-scaled superconducting LSM model with 2-pole superconducting electromagnets, and additionally the cost-down design of the superconducting electromagnets is conducted to use less high-Tc superconducting wire. Finally, the superconducting magnet coil span is selected at 120mm, and input ground armature current of 670Aturns is required to produce 44.7N of thrust based on research findings.

Design of Small-Scaled Derailment Simulator for Investigating Bogie Dynamics

  • Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • International Journal of Railway
    • /
    • v.4 no.2
    • /
    • pp.50-55
    • /
    • 2011
  • The dynamic stability of railway vehicle has long been one of the important issues in railway safety. The dynamic simulator has been used as a tool for investigating the dynamic stability of railway vehicles and wheel/rail interfaces. In particular, small scale simulators have been widely used in laboratory studies instead of full scale roller rigs which can be quite costly and rather inconvenient for testing out the effect of diverse design parameters. But techniques for design of a small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail systems and the bogie systems have not been well developed in Korea. Therefore, a research on the development of a small scale simulator for investigating bogie dynamics needs to be undertaken. The present paper investigates design of a small-scaled derailment simulator and the design of a small scale bogie. The simulator developed can be used to investigate the effect of diverse parameters such as attack angle, wheelbase and cant on dynamic behavior of the bogie and key dynamic performance parameters such as derailment coefficient and critical speed.

Structural Analysis of Vehicle Side Door at Overturn (전복시 차량 옆문의 구조해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.43-50
    • /
    • 2010
  • This study aims to analyze the structural safety by comparing deformation and equivalent stress of door with a stiffener or no stiffener when the door crashes against something in case of overturn. Three types are classified on the basis of the no stiffener model in the vehicle door. One is the type which has a stiffener. Another is the type which has no stiffener and the other is the type which has a hole in the stiffener. These three types are compared with each other by analyzing. This side door of vehicle is the automotive part about the kind of vehicle as Mercedes Benz E-Klasse scaled down as 1/18 times as the real size. The study model of vehicle door is modelled by CATIA program and it is analyzed by ANSYS.