• Title/Summary/Keyword: Scale-invariant Feature

Search Result 235, Processing Time 0.023 seconds

Correction of Mt. Baekdu DEM Generated from SPOT-5 Stereo Images (SPOT-5 스테레오 영상을 이용한 백두산 DEM 제작과 보정)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Park, Byung-Uk;Oh, Jae-Hong;Han, Dong-Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.555-560
    • /
    • 2010
  • The geoscientists are very interested in a volcanic reactivity of Mt. Baekdu. Periodical observation and monitoring are thus needed to detect the topographic and environmental changes of Mt. Baekdu. It is, however, very restrictive to survey with difficulty of observer's accessibility in the field due to political problems. This study therefore is to produce digital elevation model (DEM) of Mt. Baekdu using SPOT-5 stereo images. The produced DEM is very not accurate because of using without ground control points (GCP). To correct the previously generated DEM, scale-invariant feature transform(SIFT) matching method is adopted with shuttle radar topography mission(SRTM) DEM of NASA Jet Propulsion Laboratory(JPL). The results of the produced DEM to SRTM DEM matching indicate that the corrected DEM from SPOT-5 stereo images has more detail topographic structures. In addition, difference of spatial distances between the corrected DEM and SRTM DEM are much smaller than non-corrected DEM.

Performance Comparison and Analysis between Keypoints Extraction Algorithms using Drone Images (드론 영상을 이용한 특징점 추출 알고리즘 간의 성능 비교)

  • Lee, Chung Ho;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • Images taken using drones have been applied to fields that require rapid decision-making as they can quickly construct high-quality 3D spatial information for small regions. To construct spatial information based on drone images, it is necessary to determine the relationship between images by extracting keypoints between adjacent drone images and performing image matching. Therefore, in this study, three study regions photographed using a drone were selected: a region where parking lots and a lake coexisted, a downtown region with buildings, and a field region of natural terrain, and the performance of AKAZE (Accelerated-KAZE), BRISK (Binary Robust Invariant Scalable Keypoints), KAZE, ORB (Oriented FAST and Rotated BRIEF), SIFT (Scale Invariant Feature Transform), and SURF (Speeded Up Robust Features) algorithms were analyzed. The performance of the keypoints extraction algorithms was compared with the distribution of extracted keypoints, distribution of matched points, processing time, and matching accuracy. In the region where the parking lot and lake coexist, the processing speed of the BRISK algorithm was fast, and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the downtown region with buildings, the processing speed of the AKAZE algorithm was fast and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the field region of natural terrain, the keypoints and matched points of the SURF algorithm were evenly distributed throughout the image taken by drone, but the AKAZE algorithm showed the highest matching accuracy and processing speed.

Content-based Image Retrieval using an Improved Chain Code and Hidden Markov Model (개선된 chain code와 HMM을 이용한 내용기반 영상검색)

  • 조완현;이승희;박순영;박종현
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.375-378
    • /
    • 2000
  • In this paper, we propose a novo] content-based image retrieval system using both Hidden Markov Model(HMM) and an improved chain code. The Gaussian Mixture Model(GMM) is applied to statistically model a color information of the image, and Deterministic Annealing EM(DAEM) algorithm is employed to estimate the parameters of GMM. This result is used to segment the given image. We use an improved chain code, which is invariant to rotation, translation and scale, to extract the feature vectors of the shape for each image in the database. These are stored together in the database with each HMM whose parameters (A, B, $\pi$) are estimated by Baum-Welch algorithm. With respect to feature vector obtained in the same way from the query image, a occurring probability of each image is computed by using the forward algorithm of HMM. We use these probabilities for the image retrieval and present the highest similarity images based on these probabilities.

  • PDF

Analysis of 2-Dimensional Object Recognition Using discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 2차원 물체 인식에 관한 연구)

  • Park, Kwang-Ho;Kim, Chang-Gu;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.194-202
    • /
    • 1999
  • A method for pattern recognition based on wavelet transform is proposed in this paper. The boundary of the object to be recognized includes shape information for object of machine parts. The contour is first represented using a one-dimensional signal and normalized about translation, rotation and scale, then is used to build the wavelet transform representation of the object. Wavelets allow us to decompose a function into multi-resolution hierarchy of localized frequency bands. The recognition of 2-dimensional object based on the wavelet is described to analyze the shape of analysis technique; the discrete wavelet transform(DWT). The feature vectors obtained using wavelet analysis is classified using a multi-layer neural network. The results show that, compared with the use of fourier descriptors, recognition using wavelet is more stable and efficient representation. And particularly the performance for objects corrupted with noise is better than that of other method.

  • PDF

Location Change Estimation in a Video Stream based on SIFT Feature Distributions (SIFT 특성 분포를 이용한 비디오 스트림의 장소 변화 예측)

  • Yoo, Jun-Hee;Seok, Ho-Sik;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.295-298
    • /
    • 2011
  • 비디오 데이터의 지능적인 처리를 위해서는 사전에 작성한 메타데이터에 제한 받지 않는 유연한 접근방법이 필요하다. 본 논문에서는 엔트로피를 이용하여 적절한 특징을 추출한 후 비디오를 처리하는 방법을 소개한다. 이미지 인식이 잘 될 경우 일정한 이미지 조합으로 비디오의 배경을 설명할 수 있지만, 이미지 인식이 어렵기 때문에 동일한 배경일지라도 등장 인물의 움직임, 촬영 각도의 변화 등 사소한 변화가 발생하면 컴퓨터는 다른 이미지인 것으로 간주하게 된다. 우리가 제안하는 방법은 비디오를 구성하는 이미지 프레임에서 추출한 SIFT(Scale Invariant Feature Transform) 특성의 분포를 엔트로피에 기반하여 재구성한 후 분포 변화를 통해 장소 변화를 추정하는 방법이다. 제안 방법은 비디오 데이터의 이미지를 특징 짓는 비주얼 워드의 분포를 활용하기 때문에 사소한 변화 정도의 영향을 받지 않으면서 동시에 배경의 확연한 변화를 나타낼 수 있다. 우리는 실제 TV 드라마 데이터에 적용하여 제안 방법의 유용성을 확인하였다.

Object Recognition using SIFT and Tree Structure (SIFT와 트리구조를 이용한 내용기반 물체인식)

  • Joo, Jung-Kyoung;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.33-38
    • /
    • 2008
  • 최근 컴퓨터비전이나 로봇 공학 분야에서 가격이 저렴한 웹캠을 이용한 영상, 즉 2차원 영상으로부터 물체를 인식하는 연구가 활발히 이루어지고 있다. 이러한 로봇이나 비전에서 물체를 찾아내는 여러 가지 방향들이 제시되고 있으며, 지속적으로 로봇은 사람과 유사해져가고 있다. 이를 실현하기 위해서는 사람이 사과를 보고 사과라고 알기 때문에 사과라고 인식하듯이 로봇 또한 미리 알고 있어야 한다는 가정 하에 내용기반의 물체인식이 필요하다. 그러나 엄청난 양의 내용의 데이터베이스가 필요하다. 그래서 용량은 하드웨어기술로 커버가 가능하지만 화면상에 있는 물체들을 빠르게 데이터베이스상의 자료와 매칭이 되어야한다. 본 논문에서는 이미지를 SIFT(Scale Invariant Feature Transform)알고리즘으로 BTS(Binary Search Tree)로 트리구조의 데이터베이스를 구축하여 많은 양의 데이터베이스 중 빠르게 검색하여 화면에 있는 물체를 인식하는 방법을 제안하였다.

  • PDF

Study on the panorama image processing using the SURF feature detector and technicians. (SURF 특징 검출기와 기술자를 이용한 파노라마 이미지 처리에 관한 연구)

  • Kim, Nam-woo;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.699-702
    • /
    • 2015
  • 다중의 영상을 이용하여 하나의 파노라마 영상을 제작하는 기법은 컴퓨터 비전, 컴퓨터 그래픽스 등과 같은 여러 분야에서 널리 연구되고 있다. 파노라마 영상은 하나의 카메라에서 얻을 수 있는 영상의 한계, 즉 예를 들어 화각, 화질, 정보량 등의 한계를 극복할 수 있는 좋은 방법으로서 가상현실, 로봇비전 등과 같이 광각의 영상이 요구되는 다양한 분야에서 응용될 수 있다. 파노라마 영상은 단일 영상과 비교하여 보다 큰 몰입감을 제공한다는 점에서 큰 의미를 갖는다. 현재 다양한 파노라마 영상 제작 기법들이 존재하지만, 대부분의 기법들이 공통적으로 파노라마 영상을 구성할 때 각 영상에 존재하는 특징점 및 대응점을 검출하는 방식을 사용하고 있다. 본 논문에서 사용한 SURF(Speeded Up Robust Features) 알고리즘은 영상의 특징점을 검출할 때 영상의 흑백정보와 지역 공간 정보를 활용하는데, 영상의 크기 변화와 시점 검출에 강하며 SIFT(Scale Invariant Features Transform) 알고리즘에 비해 속도가 빠르다는 장점이 있어서 널리 사용되고 있다. 본 논문에서는 두 영상 사이 또는 하나의 영상과 여러 영상 사이에 대응되는 매칭을 계산하여 파노라마영상을 생성하는 처리 방법을 구현하고 기술하였다.

  • PDF

Combining Shape and SIFT Features for 3-D Object Detection and Pose Estimation (효과적인 3차원 객체 인식 및 자세 추정을 위한 외형 및 SIFT 특징 정보 결합 기법)

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.429-435
    • /
    • 2010
  • Three dimensional (3-D) object detection and pose estimation from a single view query image has been an important issue in various fields such as medical applications, robot vision, and manufacturing automation. However, most of the existing methods are not appropriate in a real time environment since object detection and pose estimation requires extensive information and computation. In this paper, we present a fast 3-D object detection and pose estimation scheme based on surrounding camera view-changed images of objects. Our scheme has two parts. First, we detect images similar to the query image from the database based on the shape feature, and calculate candidate poses. Second, we perform accurate pose estimation for the candidate poses using the scale invariant feature transform (SIFT) method. We earned out extensive experiments on our prototype system and achieved excellent performance, and we report some of the results.

Feature Extraction for Off-line Handwritten Character Recognition using SIFT Descriptor (SIFT 서술자를 이용한 오프라인 필기체 문자 인식 특징 추출 기법)

  • Park, Jung-Guk;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.496-500
    • /
    • 2010
  • 본 논문에서는 SIFT(Scale Invariant Feature Transform) 기술자를 이용하여 오프라인 필기체 문자 인식을 위한 특징 추출방법을 제안한다. 제안하는 방법은 문자의 획의 방향 정보를 제공하는 특징 벡터를 추출함으로써 오프라인 문자 인식에서 성능 향상을 기대할 수 있다. 테스트를 위해 MNIST 필기체 데이터베이스와 UJI Penchar2 필기체 데이터베이스를 이용하였고, BP(backpropagation)신경망과 LDA(Linear Discriminant Analysis), SVM(Support Vector Machine) 분류기에서 성능 테스트를 하였다. 본 논문의 실험결과에서는 일반적으로 사용되는 특징추출로부터 얻어진 특징에 제안된 특징추출을 정합하여 성능항샹을 보인다.

  • PDF

Correction of Rotated Region in Medical Images Using SIFT Features (SIFT 특징을 이용한 의료 영상의 회전 영역 보정)

  • Kim, Ji-Hong;Jang, Ick-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, a novel scheme for correcting rotated region in medical images using SIFT(Scale Invariant Feature Transform) algorithm is presented. Using the feature extraction function of SIFT, the rotation angle of rotated object in medical images is calculated as follows. First, keypoints of both reference and rotated medical images are extracted by SIFT. Second, the matching process is performed to the keypoints located at the predetermined ROI(Region Of Interest) at which objects are not cropped or added by rotating the image. Finally, degrees of matched keypoints are calculated and the rotation angle of the rotated object is determined by averaging the difference of the degrees. The simulation results show that the proposed scheme has excellent performance for correcting the rotated region in medical images.