• Title/Summary/Keyword: Sb doped

Search Result 223, Processing Time 0.024 seconds

Single Crystal Growth and Magnetic Properties of Mn-doped Bi2Se3 and Sb2Se3

  • Choi, Jeong-Yong;Lee, Hee-Woong;Kim, Bong-Seo;Choi, Sung-Youl;Choi, Ji-Youn;Cho, Sung-Lae
    • Journal of Magnetics
    • /
    • v.9 no.4
    • /
    • pp.125-127
    • /
    • 2004
  • We have grown Mn-doped $Bi_2Se_3$ and $Sb_2Se_3$ single crystals using the temperature gradient solidification method. We report on the structural and magnetic propertis of Mn-doped $Bi_2Se_3$ and $Sb_2Se_3$ compound semi-conductors. The lattice constants of several percent Mn-doped $Bi_2Se_3$ and $Sb_2Se_3$ were slightly smaller than those of the un-doped samples due to the smaller Mn atomic radius ($1.40 {\AA}$) than those of Bi ($1.60 {\AA}$) and Sb ($1.45 {\AA}$). Mn-doped $Bi_2Se_3$ and $Sb_2Se_3$ showed spin glass and paramagnetic properties, respectively.

A Study of Phase-change Properties of Sb-doped Ag/Ge-Se-Te thin films (Sb-doped Ag/Ge-Se-Te 박막의 상변화 특성 연구)

  • Nam, Ki-Hyun;Jeong, Won-Kook;Park, Ju-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.347-347
    • /
    • 2010
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sb-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sb-doped Ge-Se-Te thin films.

  • PDF

An evaluation on crystallization speed of N doped $Ge_2Sb_2Te_5$ thin films by nano-pulse illumination (나노-펄스 노출에 따른 질소 첨가한 $Ge_2Sb_2Te_5$ 박막의 결정화 속도 평가)

  • Song, Ki-Ho;Beak, Seung-Cheol;Park, Heung-Su;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.134-134
    • /
    • 2009
  • In this work, we report that crystallization speed as well as the electrical and optical properties about the N-doped $Ge_2Sb_2Te_5$ thin films. The 200-nm-thick N-doped $Ge_2Sb_2Te_5$ thin film was deposited on p-type (100) Si and glass substrate by RF reactive sputtering at room temperature. The amorphous-to-crystalline phase transformation of N-doped $Ge_2Sb_2Te_5$ thin films investigated by X-ray diffraction (XRD). Changes in the optical transmittance of as-deposited and annealed films were measured using a UV-VIS-IR spectrophotometer and four-point probe was used to measure the sheet resistance of N-doped $Ge_2Sb_2Te_5$ thin films annealed at different temperature. In addition, the surface morphology and roughness of the films were observed by Atomic Force Microscope (AFM). The crystalline speed of amorphous N-doped $Ge_2Sb_2Te_5$ films were measured by using nano-pulse scanner with 658 nm laser diode (power : 1~17 mW, pulse duration: 10~460 ns). It was found that the crystalline speed of thin films are decreased by adding N and the crystalline temperature is higher. This means that N-dopant in $Ge_2Sb_2Te_5$ thin film plays a role to suppress amorphous-to-crystalline phase transformation.

  • PDF

Deposition Behaviors and Electrical Properties of Sb-doped $SnO_2$ Films by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 제조된 Sb-doped $SnO_2$ 박막의 증착거동 및 전기적 특성)

  • 김근수;서지윤;이희영;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.194-200
    • /
    • 2000
  • Sb-doped tin oxide films were deposited on Corning glass 1737 substrate by plasma enhanced chemical vapor deposition(PECVD) technique using a gas mixture of SnCl4/SbCl5/O2/Ar. The deposition behaviors of tin oxide films by PECVD were compared with those by thermal CVD, and effects of deposition temperature, r.f. power and Sb doping on the electrical properties of tin oxide films were investigated. PECVD technique largely increased the deposition rate and smoothed the surface of tin oxide films compared with thermal CVD. Electrical resistivity decreased with doping of Sb due to the increase of carrier concentration. However, large doping of Sb diminished carrier concentration and mobility due to the decrease of crystallinity, which resulted in the increase of electrical resistivity. As the deposition temperature and r.f. power increased, Cl content in the film decreased.

  • PDF

Fabrication of Sb-doped $SnO_2$ transparent conducting films by sol-gel dip coating and their characteristics (솔-젤 Dip Coating에 의한 Sb-doped $SnO_2$ 투명전도막의 제조 및 특성)

  • 임태영;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.241-246
    • /
    • 2003
  • The transparent conducting thin film of ATO (antimony-doped tin oxide) was successfully fabricated on$SiO_2$/glass substrate by a sol-gel dip coating method. The crystalline phase of the ATO thin film was identified as SnO$_2$ major phase and the film thickness was about 100 nm/layer at the withdrawal speed of 50 mm/minute. Optical transmittance and electrical resistivity of the 400 nm-thick ATO thin film which was annealed under nitrogen atmosphere were 84% and $5.0\times 10^{-3}\Omega \textrm{cm}$, respectively. It was found that the $SiO_2$ layer inhibited Na ion diffusion and the formation of impurities like $Na_2SnO_3$ or SnO while increasing Sb ion concentration and higher ratio of $Sb^{5+}/Sb^{3+}$in the film. Annealing at nitrogen atmosphere leads to the reduction of $Sn^{4+}$ as well as $Sb^{5+}$ resulting in decrease of the electrical resistivity of the film.

Nitrogen을 도핑시킨 Ge-Sb-Te 박막의 광전자 및 광흡수 분광학 연구

  • Sin, Hyeon-Jun;Jeong, Min-Cheol;Kim, Min-Gyu;Lee, Yeong-Mi;Kim, Gi-Hong;Jeong, Jae-Gwan;Song, Se-An;Sun, Zhimei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.186-186
    • /
    • 2013
  • Nitrogen doped Ge-Sb-Te (N-GST) thin films for phase change random access memory (PRAM) applications were investigated by synchrotron-radiation-based x-ray photoelectron spectroscopy and absorption spectroscopy. Nitrogen doping in GST resulted in more favorable N atoms' bonding with Ge atoms rather than with Sb and Te atoms [1,2], which explains the higher phase change transition temperature than that of undoped Ge-Sb-Te thin film. Surprisingly, it was noticed that N atoms also existed in the form of molecular nitrogen, $N_2$, which is detrimental to the stability of the GST performance [3]. N-doped GST experimental features were also supported by ab-initio molecular dynamic calculations [2]. References [1] M.-C. Jung, Y. M. Lee, H.-D. Kim, M. G. Kim, and H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, "Ge nitride formation in N-doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 91, 083514 (2007). [2] Zhimei Sun, Jian Zhou, Hyun-Joon Shin, Andreas Blomqvist, and Rajeev Ahuja, "Stable nitride complex and molecular nitrogen in N doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 93, 241908 (2008). [3] Kihong Kim, Ju-Chul Park, Jae-Gwan Chung, and Se Ahn Song, Min-Cherl Jung, Young Mi Lee, Hyun-Joon Shin, Bongjin Kuh, Yongho Ha, Jin-Seo Noh, "Observation of molecular nitrogen in N-doped Ge2Sb2Te5", Appl. Phys. Lett. 89, 243520 (2006).

  • PDF

Electrical and Optical Properties of Sb-doped SnO2 Films Prepared by Chemical Vapor Deposition (화학증착법에 의해 제조된 Sb-doped $SnO_2$ 박막의 전기적 및 광학적 특성)

  • 이수원;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.319-327
    • /
    • 1992
  • Sb-doped SnO2 films were formed on Corning glass 7059 substrate by chemical vapor deposition using simulataneous hydrolysis of SnCl4 and SbCl5. Fairly good transparent conducting film with a low resistivity of ~6$\times$10-4{{{{ OMEGA }}cm and high average optical transparency above ~85% in the range of visible light was obtained at the deposition condition of 50$0^{\circ}C$ and input-gas ratio, [Psbcl5/Psncl4] of 0.05. Film conductivity was improved without loosing optical transparency at light doping of Sb and found to be due to the increase of electron concentration. However, high doping of Sb into SnO2 film largely deteriorated conductivity, optical transparency and crystallinity of the film.

  • PDF

Effect of Annealing Temperature on Phase-change Characteristics of GeSbTe-based Bilayers (GeSbTe계 이중층의 상변화 특성에 미치는 열처리 온도 효과)

  • Yoon, Hoi Jin;Bang, Ki Su;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.86-90
    • /
    • 2017
  • This work reports the phase-change behavior and thermal stability of doped GeSbTe/GeSbTe bilayers. We prepared the bilayers using RF sputtering, and annealed them at annealing temperature ranging from $100^{\circ}C$ to $400^{\circ}C$. The sheet resistance of the bilayer decreased and saturated with increasing annealing temperature, and the saturated value was close to that of pure GeSbTe film. The surface of the bilayer roughened at $400^{\circ}C$, which corresponds to the surface roughening of doped GeSbTe film. Mixed phases of face-centered cubic and hexagonal close-packed crystalline structures were identified in the bilayers annealed at elevated temperature. These results indicate that the phase-change behavior of the bilayer depends on the concurrent phase-transitions of the two GeSbTe-based films. The dopants in the doped GeSbTe film were diffused out at annealing temperatures of $300^{\circ}C$ or higher, which implies that the thermal stability of the bilayer should be considered for its application in phase-change electronic devices.

Electrical and Optical Properties of Sb-doped SnO2 Thin Films Fabricated by Pulsed Laser Deposition (펄스레이저 공정으로 제조한 Sb가 도핑된 SnO2 박막의 전기적 및 광학적 특성)

  • Jang, Ki-Sun;Lee, Jung-Woo;Kim, Joongwon;Yoo, Sang-Im
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • We fabricated undoped and Sb-doped $SnO_2$ thin films on glass substrates by a pulsed laser deposition (PLD) process. Undoped and 2 - 8 wt% $Sb_2O_3$-doped $SnO_2$ targets with a high density level of ~90% were prepared by the spark plasma sintering (SPS) process. Initially, the effects of the deposition temperature on undoped $SnO_2$ thin films were investigated in the region of $100-600^{\circ}C$. While the undoped $SnO_2$ film exhibited the lowest resistivity of $1.20{\times}10^{-2}{\Omega}{\cdot}cm$ at $200^{\circ}C$ due to the highest carrier concentration generated by the oxygen vacancies, 2 wt% Sb-doped $SnO_2$ film exhibited the lowest resistivity value of $5.43{\times}10^{-3}{\Omega}{\cdot}cm$, the highest average transmittance of 85.8%, and the highest figure of merit of 1202 ${\Omega}^{-1}{\cdot}cm^{-1}$ at $400^{\circ}C$ among all of the doped films. These results imply that 2 wt% $Sb_2O_3$ is an optimum doping content close to the solubility limit of $Sb^{5+}$ substitution for the $Sb^{4+}$ sites of $SnO_2$.

Catalytic Oxidation of Carbon Monoxide on Pt and $SnO_2$ (Pt 및 $SnO_2$ 촉매하에서의 일산화탄소의 산화반응)

  • Kwang Yul Choo;Hasuck Kim;Bonghyun Boo
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.183-192
    • /
    • 1980
  • Oxidation reactions of carbon monoxide on $SnO_2$, Sb-doped $SnO_2$, and Pt catalyst were studied. The oxidation reaction was found to be first order with respect to both CO and O$_2$ on $SnO_2$ and Sb-doped $SnO_2$ catalysts, and to be of half order on Pt catalyst. A small addition of Sb to $SnO_2$ (depant composition: 0.05∼0.1 mol %) increased the rate of oxidation. On the contrary, a large addition decreased the rate. From the rate expression of oxidation on Pt catalyst, the inhibition effect of carbon monoxide on the rate of oxidation was deduced. The experimentally obtained activatio energies were 5.7 kcal for the Sb doped $SnO_2$ catalyst (dopant composion: 0.05 mole%), and 6.4 kcal for the Pt catalyst. A possible reaction mechanism was proposed from the experimentally obtained kinetic data.

  • PDF