DOI QR코드

DOI QR Code

Effect of Annealing Temperature on Phase-change Characteristics of GeSbTe-based Bilayers

GeSbTe계 이중층의 상변화 특성에 미치는 열처리 온도 효과

  • Yoon, Hoi Jin (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Bang, Ki Su (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Lee, Seung-Yun (Department of Advanced Materials Engineering, Hanbat National University)
  • 윤회진 (한밭대학교 신소재공학과) ;
  • 방기수 (한밭대학교 신소재공학과) ;
  • 이승윤 (한밭대학교 신소재공학과)
  • Received : 2016.10.19
  • Accepted : 2016.12.06
  • Published : 2017.02.01

Abstract

This work reports the phase-change behavior and thermal stability of doped GeSbTe/GeSbTe bilayers. We prepared the bilayers using RF sputtering, and annealed them at annealing temperature ranging from $100^{\circ}C$ to $400^{\circ}C$. The sheet resistance of the bilayer decreased and saturated with increasing annealing temperature, and the saturated value was close to that of pure GeSbTe film. The surface of the bilayer roughened at $400^{\circ}C$, which corresponds to the surface roughening of doped GeSbTe film. Mixed phases of face-centered cubic and hexagonal close-packed crystalline structures were identified in the bilayers annealed at elevated temperature. These results indicate that the phase-change behavior of the bilayer depends on the concurrent phase-transitions of the two GeSbTe-based films. The dopants in the doped GeSbTe film were diffused out at annealing temperatures of $300^{\circ}C$ or higher, which implies that the thermal stability of the bilayer should be considered for its application in phase-change electronic devices.

Keywords

References

  1. J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, Appl. Surf. Sci., 253, 3969 (2007). [DOI: https://doi.org/10.1016/j.apsusc.2006.08.044]
  2. Y. S. Park and S. Y. Lee, Jpn. J. Appl. Phys., 54, 031301 (2015). [DOI: https://doi.org/10.7567/JJAP.54.031301]
  3. A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, J. Appl. Phys., 103, 111101 (2008). [DOI: https://doi.org/10.1063/1.2931951]
  4. H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, P. IEEE, 98, 2201 (2010). [DOI: https://doi.org/10.1109/JPROC.2010.2070050]
  5. M. Anbarasu, M. Wimmer, G. Bruns, M. Salinga, and M. Wuttig, Appl. Phys. Lett., 100, 143505 (2012). [DOI: https://doi.org/10.1063/1.3700743]
  6. Y. Jiang, L. Xu, J. Chen, R. Zhang, W. Su, Y. Yu, Z. Ma, and J. Xu, Phys. Stat. Sol. A, 210, 2231 (2013). [DOI: https://doi.org/10.1002/pssa.201228840]
  7. S. Y. Lee, Y. S. Park, S. M. Yoon, S. Jung, S. H. Cheon, B. G. Yu, United States Patent, 8901532 B2 (2014).
  8. Y. Zhang, J. Feng, Y. Zhang, Z. Zhang, Y. Lin, T. Tang, B. Cai, and B. Chen, Phys. Stat. Sol. (RRL), 1, R28.R30 (2007). https://doi.org/10.1002/pssr.200750011
  9. S. Ryu, K. Choi, S. Yoon, N. Lee, S. Lee, Y. Park, and B. Yu, MRS Spring Meeting & Exhibit, H7.11/G8.11 (2006).
  10. K. S. Bang, Y. J. Oh, and S. Y. Lee, J. Electron. Mater., 44, 2712 (2015). [DOI: https://doi.org/10.1007/s11664-015-3734-4]
  11. G. Liu, S. Rumyantsev, M. S. Shur, and A. A. Balandin, Appl. Phys. Lett., 102, 093111 (2013). [DOI: https://doi.org/10.1063/1.4794843]
  12. H. J. Yoon, K. S. Bang, and S. Y. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 408 (2016).
  13. H. J. Li, J. Bennett, P. Zeitzoff, T. A. Kirichenko, S. K. Banerjee, and D. Henke, IEEE Electr. Device L., 24, 221 (2003). [DOI: https://doi.org/10.1109/LED.2003.810891]
  14. S. P. Murarka, J. Appl. Phys., 56, 2225 (1984). [DOI: https://doi.org/10.1063/1.334281]