• 제목/요약/키워드: Sb addition

검색결과 282건 처리시간 0.02초

주철(鑄鐵)의 성질(性質)에 미치는 Sb 첨가(添加)의 효과(效果)에 관(關)한 연구(硏究)(I);기계적(機械的) 성질(性質)과 Pearlite의 안정화효과(安定化效果)를 중심(中心)으로 (A study for the Effects of Sb Addition on the properties of Cast Iron (I))

  • 이병엽;이계완
    • 한국주조공학회지
    • /
    • 제4권4호
    • /
    • pp.20-29
    • /
    • 1984
  • It is very important to obtain gray and ductile cast irons with completely pearlitic structure by addition more economical alloying elements. In this study, 9 melts of gray iron and 5 melts of Mg-treated ductile cast iron were made according to Sb content (0-0.08% Sb). Each melt were casted to ${\phi}20mm$ test bars in sand mold under the same condition and inspected microstructure, mechanical and thermal properties. The results obtained from this study are as follows: 1. It is confirmed that Sb should be an economical, simple and useful additive for avoiding ferrite in gray and even in ductile cast irons. 2. For gray cast iron, the recommended ladle addition of metallic Sb amounts to 0.05%. At these levels, Sb has no detrimental influence on the mechanical properties of gray cast irons, which are normally modified according to their pearlite content without increasing the chilling tendency. 3. Despite its adverse influence on graphite shape in ductile iron, Sb can be used as a pearlite stabilizing alloying element even in the case of Mg - treated iron. The quantity to be added does not exceed 0.04% in the case of thinwalled castings. 4. The nodule count is increased very much and the shape of graphite particles become remarkably spheroidal. The matrix may be fully pearlitized, except for thin - walled castings, because the high nodule count results inevitably in some ferrite. 5. The $Ac_1$ and pearlite decomposition temperature are rised in accordance with increasing of additive Sb amount.

  • PDF

후육 페라이트 구상흑연주철의 주방상태 흑연형상 및 기계적 성질에 미치는 Sb/RE의 영향 (The Effect of Sb/RE on the As-Cast Morphology of Graphite and Mechanical Properties of Heavy Section Ferritic Ductile Cast Iron)

  • 신호철;윤호성;신제식;이상목;문병문
    • 한국주조공학회지
    • /
    • 제25권5호
    • /
    • pp.195-202
    • /
    • 2005
  • In this study, we investigated the effect of Sb/RE on the microstructure and mechanical properties of as-cast heavy sectioned, over 250mm thickness, ferritic ductile cast iron. Exothermic and thermal insulation material were equipped on the wall of sand cast mold having the dimensions of $250{\times}250{\times}250$ mm. The nominal composition of the molten metal was controlled to be on the eutectic composition and Sb was added about 0, 0.005 and 0.02% respectively. In the center of as-cast ingot without Sb addition, the solidification of chunky graphite was induced by the eutectic reaction that took long time, which caused the decrease of elongation and impact energy. In case that the value of Sb/RE is 0.8, the solidification of chunky graphite could be suppressed and the improvement of nodularity was observed. On the other hand, the excessive addition of Sb suppressed the solidification of chunky graphite but gave rise to the solidification of flake graphite and the increase of pearlite contents. This results in poor elongation and impact energy which is lower than those in the case of no Sb addition.

Ni를 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성 (Sintering and Electrical Properties of Ni-doped ZnO-Bi2O3-Sb2O3)

  • 홍연우;신효순;여동훈;김종희;김진호
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.941-948
    • /
    • 2009
  • The present study aims at the examination of the effects of 1 mol% NiO addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by density, XRD, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Ni-doped ZBS (ZBSN) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered in ZBS (Sb/Bi=1.0) by Ni doping. The reproduction of pyrochlore was suppressed by the addition of Ni in ZBS. Between two polymorphs of $Zn_7Sb_2O_{12}$ spinel ($\alpha$ and $\beta$), microstructure of ZBSN (Sb/Bi=0.5) composed of a-spinel was more homogeneous than $Sb/Bi{\geq}1.0$ composed of $\beta$-spinel phase. In ZBSN, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha\;=\;6{\sim}11$) and independent on microstructure according to Sb/Bi ratio. Doping of Ni to ZBS seemed to form ${V_0}^{\cdot}$ (0.33 eV) as dominant bulk defect. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature.

Co를 첨가한 $ZnO-Bi_2O_3-Sb_2O_3$ 바리스터의 소결 및 전기적 특성 (Sintering and the Electrical Properties of Co-doped $ZnO-Bi_2O_3-Sb_2O_3$ Varistor System)

  • 김철홍;김진호
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.186-193
    • /
    • 2000
  • Effects of 1.0 mol% CoO addition on sintering and the electrical properties of ZnO-Bi2O3-Sb2O3(ZBS) varistor system with 3.0 mol% co-addition of Sb2O3 and Bi2O3 at various Sb/Bi ratio (0.5, 1.0, and 2.0) were investigated. Cobalt had little influence on the liquid-phase formation and the pyrochlore decomposition temepratures of ZBS, while densification was mainly dependent on Sb/Bi ratio: when Sb/Bi=0.5, excess Bi2O3 irrelevant to the formation of pyrochore(Zn2Sb3Bi3O14) forms eutectic liquid at ~75$0^{\circ}C$ which promotes densification and grain growth; with Sb/Bi=2.0, the second phase Zn7Sb2O12 formed by excess Sb2O3 irrelevant to the formation of the pyrochlore retards densification up to ~100$0^{\circ}C$. These phases caused the coarsening and uneven distribution of the second phase particles on the grain boundaries of ZnO above the pyrochlore decomposition temperature(~105$0^{\circ}C$), which led to broad size dist-ribution of ZnO; the specimen with Sb/Bi=1.0 showed homogeneous microstructure compared with the others, which enabled improved varistor characteristics. Doping of Co increased the nonlinearity and the potential barrier height of ZBS, which is thought to stem from improved sintering behavior such as homogenized microstructure due to size reduction and even distribution of the second phase and suppressed volatility of Bi2O3, as well as the improvement in the potential barrier structure via increased donor and interface electron trap densities.

  • PDF

$Pb(Mn_{1/3}Sb_{2/3})O_3-Pb(Zr_{0.52}Ti_{0.48})O_3$계 세라믹스의 전기적 특성과 미세구조에 미치는 ZnO 첨가영향 (The Effect of ZnO Addition on the Electric Properties and Microstructure of $Pb(Mn_{1/3}Sb_{2/3})O_3-Pb(Zr_{0.52}Ti_{0.48})O_3$Ceramics)

  • 김민재;최성철
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1108-1114
    • /
    • 1999
  • Microstructure and electrical properties of ZnO-doped (0-5 mol%) 0.05 Pb(Mn1/3Sb2/3)O3-0.95 PZT ceramics were investigated. Sintering temperature was decreased to 100$0^{\circ}C$ due to eutetic reaction between PbO and ZnO. Grain-size increased up to adding 1mol% ZnO and then decreased. Compositions of grain and grain-boundary were investigated by WDS. Lattice parameter was decreased with ZnO addition. Density increased with ZnO addition and reached to the maximum of 7.84(g/cm2) at 2 mol% ZnO. The effect of ZnO on electrical properties of PMS-PZT was investigated. At 3mol% ZnO addition electromechanical coupling factor(kp) was about 50% and relative dielectric constant($\varepsilon$33/$\varepsilon$0) was 997 Mechanical quality factor(Qm) decreased with ZnO addition. Lattice parameters and tetragonality(c/a) were measured to investigate relationship between the electric properties and substitution of Zn2+. At 3 mol% ZnO tetragonality was maximiged at c/a=1.0035 Curie temperature (Tc) decreased slightly with ZnO addition.

  • PDF

AZ31합금의 크립특성에 미치는 Sb의 영향 (Effect of Sb on the Creep Behavior of AZ31 Alloy)

  • 손근용;티안수구이;김경현
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.137-145
    • /
    • 2003
  • The effects of antimony addition on the microstructures and creep behavior of AZ31 magnesium alloy have been investigated. Constant load creep tests were carried out at temperatures ranging from $150^{\circ}C$ to $200^{\circ}C$, and an initial stress of 50MPa for AZ31 alloys containing antimony up to 0.84% by weight. Results show that small additions of antimony to AZ31 effectively decreased the creep extension and steady state creep rates. The steady state creep rate of AZ31 was reduced 2.5 times by the addition of 0.84% of antimony. The steady state creep rate of AZ31-0.84Sb alloy was controlled by dislocation climb in which the activation energy for creep was 128 kJ/mole. The microstructure of as-cast AZ31-0.84%Sb alloy showed the presence of $Mg_3Sb_2$ precipitates dispersed throughout the matrix. The main reason for the higher creep resistance in AZ31-Sb alloys is due to the presence $Mg_3Sb_2$, which effectively hindered the movement of dislocations during the elevated temperature creep.

  • PDF

NH3-SCR에서 Sb 첨가에 따른 V/W/TiO2 촉매의 Phosphorous 피독 영향 연구 (The Study on the Effect of Phosphorous Poisoning of V/W/TiO2 Catalyst According to the Addition of Sb in NH3-SCR)

  • 정민기;신중훈;이연진;홍성창
    • 공업화학
    • /
    • 제32권5호
    • /
    • pp.516-523
    • /
    • 2021
  • 본 연구는 대기 중 대표적인 미세먼지 2차 유발물질인 질소산화물 제어에 있어 암모니아를 환원제로 사용하는 선택적 촉매 환원법(Selective Catalytic Reduction; SCR)을 이용한 연구를 수행하였다. NH3-SCR 실험은 상용촉매인 V/W/TiO2와 Sb를 첨가한 V/W-Sb/TiO2 촉매를 사용하였으며 phosphorous에 의한 내피독성을 확인하였다. NH3-SCR 실험 결과, Sb의 첨가는 P에 대한 내구성을 갖는 것으로 확인되었다. 또한 이에 대한 원인을 확인하기 위하여 BET, XPS, H2-TPR, NH3-TPD, FT-IR 분석을 통해 물리·화학적 특성을 비교분석하였다. 분석 결과 V/W/TiO2 촉매에 Sb 첨가 시 P가 첨가됨에 따라 SbPO4 결합을 형성하고 VOPO4의 생성을 억제하였으며, P 첨가 전 촉매의 redox 특성을 유지함으로써 P에 대한 내피독성을 확인하였다.

소결온도와 Sb/Bi 비가 ZnO-Bi2O3-Sb2O3-Co3O4 바리스터의 미세구조와 입계 특성에 미치는 영향 (Effect of Sintering Temperature and Sb/Bi Ratio on Microstructure and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Co3O4 Varistor)

  • 홍연우;신효순;여동훈;김진호
    • 한국전기전자재료학회논문지
    • /
    • 제24권12호
    • /
    • pp.969-976
    • /
    • 2011
  • In this study we aims to evaluate the effects of 1/3 mol% $Co_3O_4$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=2.0, 1.0, and 0.5) system (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. In addition of $Co_3O_4$ in $ZnO-Bi_2O_3-Sb_2O_3$ (ZBSCo), the phase development, density, and microstructure were controlled by Sb/Bi ratio. Pyrochlore on cooling was reproduced in all systems. The more homogeneous microstructure was obtained in ZBSCo (Sb/Bi=1.0) system. In ZBSCo, the varistor characteristics were improved drastically (non-linear coefficient ${\alpha}$=23~50) compared to ZBS. Doping of $Co_3O_4$ to ZBS seemed to form $V^{\cdot}_o$(0.33 eV) as dominant defect. From IS & MS, especially the grain boundary of Sb/Bi=0.5 system is composed of electrically single barrier (0.93 eV) and somewhat sensitive to ambient oxygen with temperature.

$SnO_2$박막저항의 전기적 특성에 미치는 첨가제의 영향 (Effect of Dopants on Electrical Properties of $SnO_2$Thin Film Resistors)

  • 구본급;강병돈
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.658-666
    • /
    • 2000
  • Sb and Sb-Fe doped SnO$_2$film resistors were prepared by spray pyrolysis technique. The effects of Sb and Sb-Fe addition on TCR and electrical properties of SnO$_2$film resistors were studied. Also the dependence of electrical properties on the substrate temperature and substrate-nozzle distance was investigated. The Sn-Sb system with 7.9 mol% SbCl$_3$(STO-406) and Sn-Sb-Fe systems with 7.3 mol% SbCl$_3$+7.3 mol% FeCl$_3$(STO-407) and with 3.4 mol% SbCl$_3$+7.7mol% FeCl$_3$(STO-408) were prepared. Both of the systems Sn-Sb and Sn-Sb-Fe represented nonlinearity of TCR with temperature. As the amount of Fe increased TCR was shifted to positive direction. Decreasing Sb or increasing Fe caused resistivity to increase. Also increasing Fe caused the crystallization degree of rutile structure in SnO$_2$film to decrease. The electrical resistivity decreased with increasing substrate temperature The resistivity decreased with increasing substrate-nozzle distance in the ranges from 15 to 25 cm and increased rapidly at the distance over 25cm.

  • PDF

Phase Change Characteristics of Sb-Based Phase Change Materials

  • Park, Sung-Jin;Kim, In-Soo;Kim, Sang-Kyun;Choi, Se-Young
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.61-64
    • /
    • 2008
  • Electrical optical switching and structural transformation of $Ge_{15}Sb_{85}$, $Sb_{65}Se_{35}$ and N2.0 sccm doped $Sb_{83}Si_{17}$ were studied to investigate the phase change characteristics for PRAM application. Sb-based materials were deposited by a RF magnetron co-sputtering system and the phase change characteristics were analyzed using an X-ray diffractometer (XRD), a static tester and a four-point probe. Doping Ge, Se or Si atoms reinforced the amorphous stability of the Sb-based materials, which affected the switching characteristics. The crystallization temperature of the Sb-based materials increased as the concentration of the Ge, Se or Si increased. The minimum time of $Ge_{15}Sb_{85}$, $Sb_{65}Se_{35}$ and N2.0 sccm doped $Sb_{83}Si_{17}$ for crystallization was 120, 50 and 90 ns at 12 mW, respectively. $Sb_{65}Se_{35}$ was crystallized at $170^{\circ}C$. In addition, the difference in the sheet resistances between amorphous and crystalline states was higher than $10^4{\Omega}/{\gamma}$.