• Title/Summary/Keyword: Saturation traffic volume

Search Result 19, Processing Time 0.022 seconds

A Study on Roundabout Modeling and Saturation for Level Of Service (회전교차로 서비스수준 분석을 위한 모형개발 및 포화도 산정 연구)

  • Chang, Hyunho;Yoon, Byoungjo;Lee, Jinsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.869-875
    • /
    • 2019
  • The service level of the roundabout is estimated through an analytic model using the geometrical characteristics and parameter values obtained from the observations. Although a lot of researches have been conducted on the rotational intersection through an analytical model, the case of variable combinations is enormous, suggesting the range and service level of appropriate traffic volume according to the case study or limited characteristics through simulation. Therefore, in this study, the roundabout analysis model was constructed by using Visual Basic Application to make variable adjustment more easily. The constructed model analyzes traffic conditions according to various situations and analyzes the characteristics of roundabouts. As the result of analysis, the more the ratio of left turn and U-turn, the more the traffic distribution of each approached road was biased to one side, the limit traffic volume of the roundabout decreased and congestion appeared quickly. In particular, the more uneven the distribution of traffic was, the less the Saturation traffic volume was affected by the turnover rate.

Determination Method of Signal Timing Plan Using Travel Time Data (통행시간 자료를 이용한 신호시간계획의 결정 방법)

  • Jeong, Young-Je
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.52-61
    • /
    • 2018
  • This research suggested the traffic signal timing calculation model for signal intersections based on sectional travel time. A detection system that collects sectional travel time data such as Urban Transport Information System(UTIS) is applied. This research developed the model to calculate saturation flow rate and demand volume from travel time information using a deterministic delay model. Moreover, this model could determine the traffic signal timings to minimize a delay based on Webster model using traffic demand volume. In micro simulation analysis using VISSIM and its API ComInterface, it checked the saturation conditions and determined the traffic signal timings to minimize the intersection delay. Recently, sectional vehicle detection systems are being installed in various projects, such as Urban Transportation Information System(UTIS) and Advanced Transportation Management System(ATMS) in Korea. This research has important contribution to apply the traffic information system to traffic signal operation sector.

Estimating Utilization Factor of Left Turn Lane for Through Traffic, Intersection Capacity, and Optimum Signal Timings (직진교통의 좌회전차선 이용률 추정과 교차로용량 및 최적신호등시간 산정)

  • 도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.1 no.1
    • /
    • pp.56-63
    • /
    • 1983
  • Intersection control has dual-purposes; increasing capacity and reducing delay. The primary concern of efficient intersection control under oversaturated condition as in Korea is to increase capacity. Prevailing intersection operation technique permits thru traffic to utilize left turn lane, because the intersection without left turn pocket has left turn signal interval. In this situation, it seems not to be valid to calculate capacity, delay, and signal timings by conventional methods. By critical lane technique, capacity increases as cycle length increases. However, when thru traffic utilize LT lane, the capacity varies according to LT volume, LT interval as well as cycle length, which implies that specific cycle length and LT interval exist to maximize capacity for given LT volume. The study is designed is designed to calculate utilization factors of LT lane for thru traffic and capacities, and identify signal timings to yield maximum capacity. The experimental design involved has 3 variables; 1)LT volumes at each approach(20-300 vph), 2)cycle lengths (60-220 sec), and 3)LT intervals(2.6-42 sec) for one scenario of isolated intersection crossing two 6-lanes streets. For LT volume of 50-150 vph, capacity calculated by using the utilization factor is about 25% higher than that by critical lane method. The range of optimum cycle length to yield maximum capapcity for LT volume less than 120 vph is 140-180 sec, and increases as LT volume increases. The optimum LT interval to yield maximum capacity is longer than the intrval necessary to accommodate LT volume at saturation flow rate.

  • PDF

A Study on Operation Methodology of A Signalized Intersection Based on Optimization of Lane-Uses (차로배정 최적화를 고려한 신호교차로 운영방안에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.125-133
    • /
    • 2013
  • PURPOSES : The purpose of this study is to propose delay-minimizing operation methodology of a signalized intersection based upon optimization of lane-uses on approaching lanes for an intersection. METHODS : For the optimization model of lane-uses, a set of constraints are set up to ensure feasibility and safety of the lane-uses, traffic flow, and signal settings. Minimization of demand to saturation flow ratio of a dual-ring signal control system is introduced to the objective function for delay minimization and effective signal operation. Using the optimized lane-uses, signal timings are optimized by delay-based model of TRANSYT-7F. RESULTS : It was found that the proposed objective function is great relation with delay time for an intersection. From the experimental results, the method was approved to be effective in reducing delay time. Especially, cases for two left-turn lanes reduced greater delays than those for a left turn lane. It is noticed that the cases for different traffic volume by approach reduced greater delays than those for the same traffic volume by approach. CONCLUSIONS : It was concluded that the objective function is proper for lane-uses optimizing model and the operation method is effective in reducing delay time for signalized intersections.

A Comparative Evaluation of Confidence of Vehicle-Dectetor Informations for Real-Time Traffic Signal Control. (실시간신호제어를 위한 차량검지기 정보의 신뢰성 비교평가)

  • 오영태;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.91-125
    • /
    • 1996
  • The purpose of this paper is comparatively to evaluate the confidence of Vehicle-Detector informations for various detectors in order to test to be possible the application of these to real time traffic signal control. The detectors which are tested for this study are Circle-Shaped Loop, Ultrasonic, Microwave and Image detector. The tested items for each detectors are traffic volume, degree of saturation for through and left turn movement, speed and queue length, etc. These items for each are tested at the field according to several situations, such as dry day, raining day, night and daytime. The result of these tests are performed comparative analysis and statistical examination in order to increase the confidence of the experiments.

  • PDF

Estimation of Incheon International Airport Capacity by using Aircraft Delay Simulation Model (시뮬레이션 모델을 활용한 인천국제공항 수용량 산정에 관한 연구)

  • Bang, Jun;Kim, DoHyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2019
  • To prepare for the ever-increasing demand for air transport, airport operators should be well aware of the timing of the saturation of the facility and increase the capacity of the airport through extension or extension. The capacity of an airport is determined by the smallest value of the facilities that make up the airport, but it is generally customary to determine the capacity of the costly and time-consuming runway as a whole for the airport. For analyzing the capacity of the runway capacity, the study used the most accurate microscopic air traffic simulation, Simmod-PRO, to analyze the saturation time of three runways currently in Incheon International Airport's operation, and calculate the appropriate time for operation of the 4th runway. The study also calculate the relocation of Airport's high-speed exit taxiway for analyzing the increasing of capacity.

Throughput Analysis of Right Turn Shared Lane with Lane Width Change (차로폭에 따른 우회전 공용차로의 통과교통량분석)

  • 김동녕;김경환
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.17-31
    • /
    • 2003
  • This study is about throughput analysis of the shared right turn lane at signalized intersection with lane width change. It is expected that the increased width of the right turn shared lane causes to increase the volume of right turn on red(RTOR) In this study, the throughput computation is designed to take into account the lost time which is caused by the blocked right turn due to the stop of through traffic. The saturation flow rate of right turn using the rest of lane after through traffic stops is included as well. Results show that the different RTOR volume levels due to the various shared lane width leads to a difference in throughput. For the shared right turn lanes. throughput capacity for various lane widths is bigger than that of the KHCM as much as from 1.1 to 2.1 times.

A Method of Generating Traffic Travel Information Based on the Loop Detector Data from COSMOS (실시간신호제어시스템 루프검지기 수집정보를 활용한 소통정보 생성방안에 관한 연구)

  • Lee, Choul-Ki;Lee, Sang-Soo;Yun, Byeong-Ju;Song, Sung-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.34-44
    • /
    • 2007
  • Many urban cities deployed ITS technologies to improve the efficiency of traffic operation and management including a real-time franc control system (i.e., COSMOS). The system adopted loop detector system to collect traffic information such as volume, occupancy time, degree of saturation, and queue length. This paper investigated the applicability of detector information within COSMOS to represent the congestion level of the links. Initially, link travel times obtained from the field study were related with each of detector information. Results showed that queue length was highly correlated with link travel time, and direct link travel time estimation using the spot speed data produced high estimation error rates. From this analysis, a procedure was proposed to estimate congestion level of the links using both degree of saturation and queue length information.

  • PDF

The Technique of Estimating the Right-Turn Adjustment Factor (우회전 보정계수 산정기법)

  • Kim, Gyeong-Hwan;Kim, Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.73-84
    • /
    • 2001
  • Korean Highway Capacity Manual applies 7 adjustment factors to estimate saturation flows at signalized intersections. Among the adjustment factors, the right-turn adjustment factor uses equation hard to understand and requires complicated computing process comparing other adjustment factors. Thus. this study was conducted in order to suggest a new technique of estimating the right-turn adjustment factor which is easy to understand and simple to computer by having reasonable degree of accuracy. In this study the right-turn saturation flow ratios which are important in estimating the factor are suggested and the equation to estimate the volume of right-turn on red signal(RTOR) is developed based on observed data. The right-turn saturation flow rates can be estimated according to turning radius and number of lanes of crossing road dividing right-turn lanes into canalized and uncanalized lanes. The RTOR volume is estimated using the proportion of the time during which RTOR is possible to the whole time of red signal according to the through traffic volume per lane of the approach at signalized intersections. The technique of estimating the right-turn adjustment factor suggested in this study, which follows the HCM2000 of U.S. in principal, first judges the right-turn lane to be used exclusively for right-turn or not by employing the RTOR factor and the judging equation developed in this study. Next, if the right-turn lane is not exclusive right-turn lane, the shared right-turn lane is classified into single lane approach or multi lane approach. Thus, a total of three methods of estimating the right-turn adjustment factor to the three cases are suggested in this study.

  • PDF

A Study on the Operational Efficiency of Intersection Shared Lanes (교차로 공용차로 운영 효율성 분석)

  • Park, Kun-Young;Lee, Si-Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • This study focuses on operational analysis of 2 types of intersection shared lanes. First, the analysis showed that a through & right-turn shared lane is always less used than the adjacent through-only lanes and as a result, operational efficiency deteriorates. To improve the efficiency fine-tuning in signal timing optimization using lane-by-lane traffic volume data is required. Further improvement can be achieved by guiding drivers to equally use the shared lane. For left-turn & U-turn shared lanes, it was found that saturation flow rate is affected by interference between U-turn and conflicting right-turn movements. However, since such interference does not occur in every cycle, a statistical model must be established to develop realistic adjustment factor for saturation flow rate of the shared lane.