• Title/Summary/Keyword: Saturation Temperature

Search Result 938, Processing Time 0.026 seconds

Effects of Covering Newborn's Head after Bath on Body Temperature, Heart Rate and Arterial Oxygen Saturation

  • Kim, Dong-Yeon;Park, Ho-Ran
    • Child Health Nursing Research
    • /
    • v.18 no.4
    • /
    • pp.201-206
    • /
    • 2012
  • Purpose: In this study changes were observed in body temperature, heart rate and arterial oxygen saturation (SaO2) of newborns after bathing and to determine the effects of covering their heads with cotton hats after bathing. Methods: Participants were 58 newborn infants, 31 in the experimental group had their heads covered with cotton hats after their bath while 27 in the control group did not. Body temperature, arterial oxygen saturation and heart rate were measured at 8 consecutive times after bathing. Data were analyzed using t-test and repeated measures ANOVA. Results: Body temperature declined shortly after bathing. The experimental group showed faster recovery (p<.001). Heart rate increased after bathing in both groups. Heart rate in the experimental group decreased for 120 minutes and gradually increased to baseline (p<.001). In the control group, heart rate decreased for 180 minutes and then increased but did not reach the baseline (p<.001). Arterial oxygen saturation decreased shortly after bathing and recovery to the baseline was more rapid in the experimental group (30 minutes vs. 60 minutes) (p<.001). Conclusion: With significant changes observed in newborns' body temperature, arterial oxygen saturation and heart rate, covering the head right after bathing is effective in stabilizing infants' physiological system.

A Comparison between the Internal Saturation Temperature of Working Fluid and the Surface Temperature of Adiabatic Zone of Two-Phase Closed Thermosyphons with Various Helical Grooves (평관형 및 나선 그루브형 열사이폰 내부 작동유체의 포화온도와 단열부의 표면온도에 관한 연구)

  • Han, K.I.;Cho, D.H.;Park, J.U.;Lee, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1243-1249
    • /
    • 2004
  • This study is focused on the comparison between the internal saturation temperature of the working fluid and the surface temperature of adiabatic zone of two-phase closed thermosyphons with various helical grooves. Distilled water, methanol and ethanol have been used as the working fluid. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the performances of having 50, 60, 70, 80, 90 helical grooves. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for the comparison. The results show that the numbers of grooves and the type of working fluids are very important factors for the operation of thermosyphons. A good agreement between the internal saturation temperature of working fluid and the surface temperature of adiabatic zone of two-phase closed thermosyphons with various helical grooves is obtained.

  • PDF

Ammonia Removal Model Based on the Equilibrium and Mass Transfer Principles

  • Yoon, Hyein;Lim, Ji-Hye;Chung, Hyung-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.555-561
    • /
    • 2008
  • In air stripping of ammonia from the aqueous solution, a new removal model was presented considering the equilibrium principles for the ammonia in aqueous solution and between the aqueous and air phase. The effects of pH, temperature and airflow rate on the ammonia removal were evaluated with the model. In addition, the saturation degree of ammonia in air was defined and used to evaluate the effect of each experimental factor on the removal rate. As pH (8.9 to 11.9) or temperature (20 to 50 oC) was increased, the overall removal rate constants in all cases were appeared to be increased. Our presented model shows that the degrees of saturation were about the same (0.45) in all cases when the airflow condition remains the same. This result indicates that the effect of pH and temperature were directly taken into consideration in the model equation. As the airflow increases, the overall removal rate constants were increased in all cases as expected. However, the saturation degree was exponentially decreased with increasing the airflow rate in the air phase (or above-surface) aeration. In the subsurface aeration the saturation degree remains a constant value of 0.65 even though the airflow rate was increased. These results indicate that the degree of saturation is affected mainly by the turbulence of the aqueous solution and remains the same above a certain airflow rate.

Disturbance observer-based robust backstepping load-following control for MHTGRs with actuator saturation and disturbances

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3685-3693
    • /
    • 2021
  • This paper presents a disturbance observer-based robust backstepping load-following control (DO-RBLFC) scheme for modular high-temperature gas-cooled reactors (MHTGRs) in the presence of actuator saturation and disturbances. Based on reactor kinetics and temperature reactivity feedback, the mathematical model of the MHTGR is first established. After that, a DO is constructed to estimate the unknown compound disturbances including model uncertainties, external disturbances, and unmeasured states. Besides, the actuator saturation is compensated by employing an auxiliary function in this paper. With the help of the DO, a robust load-following controller is developed via the backstepping technique to improve the load-following performance of the MHTGR subject to disturbances. At last, simulation and comparison results verify that the proposed DO-RBLFC scheme offers higher load-following accuracy, better disturbances rejection capability, and lower control rod speed than a PID controller, a conventional backstepping controller, and a disturbance observer-based adaptive sliding mode controller.

Effects of Abdominal Breathing on Anxiety, Blood Pressure, Peripheral Skin Temperature and Saturation Oxygen of Pregnant Women in Preterm Labor (복식호흡이 조기진통 임부의 불안, 혈압, 말초 피부온도와 산소 포화도에 미치는 효과)

  • Chang, Soon-Bok;Kim, Hee-Sook;Ko, Yun-Hee;Bae, Choon-Hee;An, Sung-Eun
    • Women's Health Nursing
    • /
    • v.15 no.1
    • /
    • pp.32-42
    • /
    • 2009
  • Purpose: This study was done to examine the effects of abdominal breathing on VAS-Anxiety (VAS-A), blood pressure, peripheral skin temperature and saturation oxygen in pregnant women in preterm labor. Method: The study design was a matched control group interrupted time series. Forty-six women matched to gestational age were assigned to either the experimental group (26) or control group (20). Data were collected between March 2007 and May 2008. For the experimental treatment the women performed abdominal breathing 30 times, which took 5 minutes, and did one set of 5-minute abdominal breathing daily for three days. Data collection was done before and after the abdominal breathing to measure VAS-A, blood pressure, peripheral skin temperature and oxygen saturation. Descriptive, $X^2$, Mann-Whitney U tests were used to analyze the data with the SPSS/PC+Win 15.0 program. Result: For the experimental group there were significant decreases in VAS-A (Z=-4.37, p=.00), systolic blood pressure (Z=-3.38, p=.00), and an increase in skin temperature (Z=-4.50, p=.00) and oxygen saturation (Z=-3.66, p=.00). Conclusion: These findings suggest that abdominal breathing in pregnant women in preterm labor results in decreases in anxiety(VAS-A) including biological evidences such as systolic blood pressure, and increases in peripheral skin temperature and oxygen saturation. Further longitudinal study is needed on the lasting effects and obstetric and neonatal outcomes following abdominal breathing.

  • PDF

A Study on Temperature Characteristics of Automatic Valve for High Pressure Cylinder of FCV (수소연료전지 자동차 압력 용기용 전자밸브의 온도 특성에 관한 연구)

  • Lee, Hyo-Ryeol;Ahn, Jung-Hwan;Kim, Hwa-Young;Kim, Young-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • FCV is installed with a automatic valve attached in an high pressure cylinder to control the hydrogen flow. The supply of hydrogen from the cylinder into the fuel cell stack is controlled via the on/off operation of a solenoid attached to the automatic valve. The solenoid needs to provide the necessary attraction force even at any saturation temperature caused by drive of the vehicle. In this study, the simplified prediction equations for the saturation temperature are suggested. The finite element analysis was performed by steady state technique, according to the boundary condition in order to predict the saturation temperature and attraction force. Finally, the saturation temperature was validated through comparison between the analysis results and measurement results. From the results, the measured saturation temperature $5.9^{\circ}C$ lower with respect to the analysis results. And the error of attraction force ranged from 1.0 to 2.1 N at testing conditions.

$T^{3/2}$ Temperature Dependence of Magnetization of Amorphous $Fe_{80-x}Co_xB_{20}$ (비정질합금 $Fe_{80-x}Co_xB_{20}$ 자화값의 $T^{3/2}$ 온도 의존성)

  • Yu, Byeong-Du;Kim, Jong-O;Kim, Gyeong-Seop;Yu, Seong-Cho
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.211-215
    • /
    • 1992
  • The temperature-dependent saturation magnetization curves of amorphous $Fe_{80-x}Co_xB_{20}$ (8 ${\le}$ x ${\le}$ 40, the step of x is 8) alloys were measured using a vibrating sample magnetometer from 77 K up to 1000 K. Curie temperature and the Bloch coefficient were estimated from the saturation magnetization curves. The low temperature dependence of magnetization is in good agreement with Bloch relation, $M_s(T)$=$M_s(O)$ (1-$BT^{3/2}$ - ${\cdots}.$). The spin wave stiffness constant, tne range of the exchange interaction, and the probable atomic spin were calculated from the saturation magnetization values.

  • PDF

Effect of Light Intensity, Temperature and $CO_2$ Concentration on Photosynthesis in Yacon(Polymnia sonchifolia Poepp.& Endl.) (광도, 온도 및 $CO_2$의 농도가 야콘의 광합성에 미치는 영향)

  • Lee, Kang-Soo;Choi, Sun-Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.3
    • /
    • pp.232-237
    • /
    • 2001
  • This study was carried out to know the effect of light intensity, temperature and $CO_2$ concentration on photosynthesis and transpiration in yacon(Polymnia sonchifolia Poepp.& Endl.). Light compensation point was ${58\;{\mu}mol\;m^{-2}\;s^{-1}}$and light saturation point was ${1708\;{\mu}mol\;m^{-2}\;s^{-1}}$. Transpiration rate was increased to about 4 mmol${m^{-2}\;s^{-1}}$ with increasing of light intensity to ${2193\;{\mu}mol\;m^{-2}\;s^{-1}}$. The optimum temperature for photosynthesis was ${24^{\circ}C}$ in air. Photosynthesis was gradually reduced as transpiration rate increased from 4 to 8 mmol ${m^{-2}\;s^{-1}}$ in different air temperature. $CO_2$ compensation point was 63 vpm and $CO_2$ saturation point was 1155 vpm and light saturation point was enhanced with increasing of $CO_2$ concentration from 350 vpm to 1300 vpm.

  • PDF

Water Requirement of Twist Peppers in Greenhouse (온실 재배 꽈리고추의 필요수량)

  • 윤용철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.59-66
    • /
    • 2000
  • This study was carried out to investigated the water requirement of twisted sweet peppers which are cultivated in a green house. The meteorological conditions during the experiment period was close to that of normal year except the temperature and relative humidity. The growth status was improved with the increased saturation ratio. The range of the variation of daily water requirement were very large. The peak consumption occurred in the early August. And the higher saturation ratio resulted in higher water requirement. The total water requirement were about 57.180g/d/plant for pot with 100% (P100) of saturation , about 38.700g/d/plant for pot with 80%(P80) of saturation , about 23,720g/d/plant for pot with 60%(P60) of saturation, and about 53, 390g/d/plant for field cultivation in the green house, respectively. The water requirement was correlated with average ambient temperature and growing status, while no significant correlation were found between water requirement and minimum relative humidity or intensity of solar radiation. And the higher correlation was shown as the saturation ratio was increased. The transpiration coefficients of twisted sweet pepper were 378.0g/g for field cultivation in the green house, 363.3g/g for P100, 338.7g for P80 which was the smallest among pot cultivation , and 472.1g/g for P60 , respectively.

  • PDF

The Practical Method and Experimental Verification of Temperature Estimation in the Permanent Magnet of Electric Machine

  • Kang, Kyongho;Yu, Sukjin;Lee, Geunho;Lee, Byeong-Hwa
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.421-426
    • /
    • 2015
  • This paper presents a practical method for estimation of average temperature in the permanent magnet (PM) of electric machine by using finite element analysis (FEA) and dynamo load experiment. First of all, the temperature effect of PM to the torque has been employed by FEA in order to evaluate the Temperature-Torque characteristic curve. The 1st order polynomial equation which is torque attenuation coefficient is derived by the FEA result of the Temperature-Torque curve. Next, torque saturation test with constant current condition is performed by dynamo load experiment. Then, the temperature trend can be estimated by adding the initial starting temperature using the torque attenuation coefficient and torque saturation curve. Lastly, estimated temperature is validated by infrared thermometer which measures temperature of PM surface. The comparison between the estimated result and experimental result gives a good agreement within a deviation of maximum $8^{\circ}C$.