• Title/Summary/Keyword: Saturated sand

Search Result 184, Processing Time 0.017 seconds

Effect of a frontal impermeable layer on the excess slurry pressure during the shield tunnelling in the saturated sand (포화 사질토에서 전방 차수층이 쉴드터널 초과 이수압에 미치는영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.347-370
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, when the slurry pressure would be properly adjusted. Low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. In tests slurry pressure was increased until the slurry flowed out of the ground surface or the ground fails. Location and dimension of the impermeable layer were varied. As results, the maximum and the excess slurry pressure in sandy ground were linearly proportional to the cover depth. Larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0 ~ 1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5 ~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

Stability Analysis of the Unsaturated Infinite Slope Considering Suction Stress under Steady Infiltration Condition (정상침투조건에서 흡입응력을 고려한 불포화 무한사면의 안정해석)

  • Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.5-15
    • /
    • 2013
  • In this paper, the unsaturated slope stability analysis considering suction stress (Lu and Godt, 2008) was introduced and the results applied for a certain sand slope were analyzed. The unsaturated slope stability analysis considering suction stress can analyze both conditions of steady infiltration and no infiltration, and it can estimate the safety factor of slope as a function of soil depth. Also, the influence of weathering phenomenon at a certain depth from the ground surface can be considered. The stability analysis considering suction stress was applied to the unsaturated infinite slope composed of sand with the relative density of 60%. The suction stress under no infiltration condition was affected by ground water table until a certain influencing depth. However, the suction stress under steady infiltration condition was affected by seepage throughout the soils. Especially, the maximum suction stress was displayed around ground surface. The factor of safety in the infinite slope under no infiltration condition rapidly increased and decreased within the influence zone of ground water table. As a result of slope stability analysis, the factor of safety is less than 1 at the depth of 2.4 m below the ground surface. It means that the probability of slope failure is too high within the range of depths. The factor of safety under steady infiltration condition is greater than that under no infiltration condition due to the change of suction stress induced by seepage. As the steady infiltration rate of precipitation was getting closer to the saturated hydraulic conductivity, the factor of safety decreased. In case of the steady infiltration rate of precipitation with $-1.8{\times}10^{-3}cm/s$, the factor of safety is less than 1 at the depths between 0.2 m and 3 m below the ground surface. It means that the probability of slope failure is too high within the range of depths, and type of slope failure is likely to be shallow landslides.

The Effects of Geological and Topographical Features on Landslide and Land-creep (지질(地質)과 지형(地形)이 산사태(山沙汰) 및 땅밀림에 미치는 영향(影響))

  • Jau, Jae-Gyu;Park, Sang-Jun;Son, Doo-Sik;Joo, Sung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.323-334
    • /
    • 2000
  • This study was carried out to investigate the effects of geological and topographical features on landslide and land-creep at the twenty four surveyed sites of Kyungpook province. According to the results obtained, it was concluded that continuous heavy rainfall was one of the primary factors to occur landslide and land-creep. Most of the landslides occurred in the past were concentrated in the granite and granitic gneiss zones, while land-creeps were mainly occurred in the mud-stone zones. Therefore, it was thought that the physical properties such as soil texture, solid phase, moisture contents, density, hardness and porosity rate of weathered granite and granitic gneiss could affect the occurrence of landslide and land-creep. Due to the holding of sand contents in the upper soil layers of weathered granite and granitic gneiss, rainfall could infiltrate into the soil easily. While lower soil layers contained much quantity of clay and silt contents, those soils saturated with rainfall cause to lose viscosity and shear strength. Therefore, it was seemed that landslide was occurred more easily and the saturation of those soils was made much easily by bed rocks under those soils. Landslide and land-creep are slided into lower place by gravitation and slope degree factors. Therefore, prediction of landslide occurrence is very difficult because landslide is occurred abruptly, and physical properties of the soil have to be understood and checking the existence of bed rocks under the soils is not easy, on the other hand, land-creep is progressed very slowly. Therefore, it was suggested that in a degree creeping could be protected by removing of several causing factors.

  • PDF

Characteristics of Shear Strength and Elastic Waves in Artificially Frozen Specimens using Triaxial Compression Tests (삼축압축실험을 이용한 인공동결시료의 강도평가 및 탄성파 특성변화)

  • Kim, JongChan;Lee, Jong-Sub;Hong, Seung-Seo;Lee, Changho
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.