• Title/Summary/Keyword: Satellites data

Search Result 666, Processing Time 0.02 seconds

Coupling Detection in Sea Ice of Bering Sea and Chukchi Sea: Information Entropy Approach (베링해 해빙 상태와 척치해 해빙 변화 간의 연관성 분석: 정보 엔트로피 접근)

  • Oh, Mingi;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1229-1238
    • /
    • 2018
  • We examined if a state of sea-ice in Bering Sea acts as a prelude of variation in that of Chukchi Sea by using satellites-based Arctic sea-ice concentration time series. Datasets consist of monthly values of sea-ice concentration during 36 years (1982-2017). Time series analysis armed with Transfer entropy is performed to describe how sea-ice data in Chukchi Sea is affected by that in Bering Sea, and to explain the relationship. The transfer entropy is a measure which identifies a nonlinear coupling between two random variables or signals and estimates causality using modification of time delay. We verified this measure checked a nonlinear coupling for simulated signals. With sea-ice concentration datasets, we found that sea-ice in Bering Sea is influenced by that in Chukchi Sea 3, 5, 6 months ago through the transfer entropy measure suitable for nonlinear system. Particularly, when a sea-ice concentration of Bering Sea has a local minimum, sea ice concentration around Chukchi Sea tends to decline 5 months later with about 70% chance. This finding is considered to be a process that inflow of Pacific water through Bering strait reduces sea-ice in Chukchi Sea after lowering the concentration of sea-ice in Bering Sea. This approach based on information theory will continue to investigate a timing and time scale of interesting patterns, and thus, a coupling inherent in sea-ice concentration of two remote areas will be verified by studying ocean-atmosphere patterns or events in the period.

Comparison of Visualization Enhancement Techniques for Himawari-8 / AHI-based True Color Image Production (Himawari-8/AHI 기반 True color 영상 생산을 위한 시각화 향상 기법 비교 연구)

  • Han, Hyeon-Gyeong;Lee, Kyeong-Sang;Choi, Sungwon;Seo, Minji;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Kim, Honghee;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.483-489
    • /
    • 2019
  • True color images display colors similar to natural colors. This has the advantage that it is possible to monitor rapidly the complex earth atmosphere phenomenon and the change of the surface type. Currently, various organizations are producing true color images. In Korea, it is necessary to produce true color images by replacing generations with next generation weather satellites. Therefore, in this study, visual enhancement for true color image production was performed using Top of Atmosphere (TOA) data of Advanced Himawari Imager (AHI) sensor mounted on Himawari-8 satellite. In order to improve the visualization, we performed two methods of Nonlinear enhancement and Histogram equalization. As a result, Histogram equalization showed a strong bluish image in the region over $70^{\circ}$ Solar Zenith Angle (SZA) compared to the Nonlinear enhancement and nonlinear enhancement technique showed a reddish vegetation area.

Green Algae Detection in the Middle·Downstream of Nakdong River Using High-Resolution Satellite Data (고해상도 위성영상을 활용한 낙동강 녹조탐지기법 비교 및 분석)

  • Byeon, Yugyeong;Seo, Minji;Jin, Donghyun;Jung, Daeseong;Woo, Jongho;Jeon, Uujin;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.493-502
    • /
    • 2021
  • Recently, because of changes in temperature and rising water temperatures due to increased pollution sources, many algae have been produced in the water system. Therefore, there has been a lot of research using satellite images for the generation and monitoring of green algae. However, in prior studies, it is difficult to consider the optical properties of the local water system by using only a single index, and by using medium and low-resolution satellite images to conduct large-scale algae detection, there is a problem of accuracy in narrow, broad rivers. Therefore, in this work, we utilize high-resolution images of Sentinel-2 satellites to perform green algae detection on a single index (NDVI, SEI, FGAI) and development index (NDVI & SEI, FGAI & SEI) that mixes single indices. In this study, POD, FAR, and PC values were utilized to evaluate the accuracy of green algae detection algorithms, and the FGAI & SEI index showed the highest accuracy with 98.29% overall accuracy PC.

Analysis of Spectral Reflectance Characteristics Using Hyperspectral Sensor at Diverse Phenological Stages of Soybeans

  • Go, Seung-Hwan;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.699-717
    • /
    • 2021
  • South Korea is pushing for the advancement of crop production technology to achieve food self-sufficiency and meet the demand for safe food. A medium-sized satellite for agriculture is being launched in 2023 with the aim of collecting and providing information on agriculture, not only in Korea but also in neighboring countries. The satellite is to be equipped with various sensors, though reference data for ground information are lacking. Hyperspectral remote sensing combined with 1st derivative is an efficient tool for the identification of agricultural crops. In our study, we develop a system for hyperspectral analysis of the ground-based reflectance spectrum, which is monitored seven times during the cultivation period of three soybean crops using a PSR-2500 hyperspectral sensor. In the reflection spectrum of soybean canopy, wavelength variations correspond with stages of soybean growths. The spectral reflection characteristics of soybeans can be divided according to growth into the vegetative (V)stage and the reproductive (R)stage. As a result of the first derivative analysis of the spectral reflection characteristics, it is possible to identify the characteristics of each wavelength band. Using our developed monitoring system, we observed that the near-infrared (NIR) variation was largest during the vegetative (V1-V3) stage, followed by a similar variation pattern in the order of red-edge and visible. In the reproductive stage (R1-R8), the effect of the shape and color of the soybean leaf was reflected, and the pattern is different from that in the vegetative (V) stage. At the R1 to R6 stages, the variation in NIR was the largest, and red-edge and green showed similar variation patterns, but red showed little change. In particular, the reflectance characteristics of the R1 stage provides information that could help us distinguish between the three varieties of soybean that were studied. In the R7-R8 stage, close to the harvest period, the red-edge and NIR variation patterns and the visible variation patterns changed. These results are interpreted as a result of the large effects of pigments such as chlorophyll for each of the three soybean varieties, as well as from the formation and color of the leaf and stem. The results obtained in this study provide useful information that helps us to determine the wavelength width and range of the optimal band for monitoring and acquiring vegetation information on crops using satellites and unmanned aerial vehicles (UAVs)

FREE-FLOATING PLANETS, THE EINSTEIN DESERT, AND 'OUMUAMUA

  • Gould, Andrew;Jung, Youn Kil;Hwang, Kyu-Ha;Dong, Subo;Albrow, Michael D.;Chung, Sun-Ju;Han, Cheongho;Ryu, Yoon-Hyun;Shin, In-Gu;Shvartzvald, Yossi;Yang, Hongjing;Yee, Jennifer C.;Zang, Weicheng;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Dong-Joo;Lee, Yongseok;Park, Byeong-Gon;Pogge, Richard W.
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.5
    • /
    • pp.173-194
    • /
    • 2022
  • We complete the survey for finite-source/point-lens (FSPL) giant-source events in 2016-2019 KMTNet microlensing data. The 30 FSPL events show a clear gap in Einstein radius, 9 𝜇as < 𝜃E < 26 𝜇as, which is consistent with the gap in Einstein timescales near tE ~ 0.5 days found by Mróz et al. (2017) in an independent sample of point-source/point-lens (PSPL) events. We demonstrate that the two surveys are consistent. We estimate that the 4 events below this gap are due to a power-law distribution of free-floating planet candidates (FFPs) dNFFP/d log M = (0.4 ± 0.2) (M/38 M)-p/star, with 0.9 ≲ p ≲ 1.2. There are substantially more FFPs than known bound planets, implying that the bound planet power-law index 𝛾 = 0.6 is likely shaped by the ejection process at least as much as by formation. The mass density per decade of FFPs in the Solar neighborhood is of the same order as that of 'Oumuamua-like objects. In particular, if we assume that 'Oumuamua is part of the same process that ejected the FFPs to very wide or unbound orbits, the power-law index is p = 0.89 ± 0.06. If the Solar System's endowment of Neptune-mass objects in Neptune-like orbits is typical, which is consistent with the results of Poleski et al. (2021), then these could account for a substantial fraction of the FFPs in the Neptune-mass range.

Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin (Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석)

  • Kim, Byeongcheol;Lee, Kyungil;Park, Seonyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.765-779
    • /
    • 2022
  • This study evaluates the accuracy in identifying the burned area in South Korea using multi-temporal data from Sentinel-2 MSI and Landsat 8/9 OLI. Spectral indices such as the Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), and Burned Area Index (BAI) were used to identify the burned area in the March 2022 forest fire in Uljin. Based on the results of six indices, the accuracy to detect the burned area was assessed for four satellites using Sentinel-2 and Landsat 8/9, respectively. Sentinel-2 and Landsat 8/9 produce images every 16 and 10 days, respectively, although it is difficult to acquire clear images due to clouds. Furthermore, using images taken before and after a forest fire to examine the burned area results in a rapid shift because vegetation growth in South Korea began in April, making it difficult to detect. Because Sentinel-2 and Landsat 8/9 images from February to May are based on the same date, this study is able to compare the indices with a relatively high detection accuracy and gets over the temporal resolution limitation. The results of this study are expected to be applied in the development of new indices to detect burned areas and indices that are optimized to detect South Korean forest fires.

APPLICATION OF WIFI-BASED INDOOR LOCATION MONITORING SYSTEM FOR LABOR TRACKING IN CONSTRUCTION SITE - A CASE STUDY in Guangzhou MTR

  • Sunkyu Woo;Seongsu Jeong;Esmond Mok;Linyuan Xia;Muwook Pyeon;Joon Heo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.869-875
    • /
    • 2009
  • Safety is a big issue in the construction sites. For safe and secure management, tracking locations of construction resources such as labors, materials, machineries, vehicles and so on is important. The materials, machineries and vehicles could be controlled by computer, whereas the movement of labors does not have fixed pattern. So, the location and movement of labors need to be monitored continuously for safety. In general, Global Positioning System(GPS) is an opt solution to obtain the location information in outside environments. But it cannot be used for indoor locations as it requires a clear Line-Of-Sight(LOS) to satellites Therefore, indoor location monitoring system could be a convenient alternative for environments such as tunnel and indoor building construction sites. This paper presents a case study to investigate feasibility of Wi-Fi based indoor location monitoring system in construction site. The system is developed by using fingerprint map of gathering Received Signal Strength Indication(RSSI) from each Access Point(AP). The signal information is gathered by Radio Frequency Identification (RFID) tags, which are attached on a helmet of labors to track their locations, and is sent to server computer. Experiments were conducted in a shield tunnel construction site at Guangzhou, China. This study consists of three phases as follows: First, we have a tracking test in entrance area of tunnel construction site. This experiment was performed to find the effective geometry of APs installation. The geometry of APs installation was changed for finding effective locations, and the experiment was performed using one and more tags. Second, APs were separated into two groups, and they were connected with LAN cable in tunnel construction site. The purpose of this experiment was to check the validity of group separating strategy. One group was installed around the entrance and the other one was installed inside the tunnel. Finally, we installed the system inner area of tunnel, boring machine area, and checked the performance with varying conditions (the presence of obstacles such as train, worker, and so on). Accuracy of this study was calculated from the data, which was collected at some known points. Experimental results showed that WiFi-based indoor location system has a level of accuracy of a few meters in tunnel construction site. From the results, it is inferred that the location tracking system can track the approximate location of labors in the construction site. It is able to alert the labors when they are closer to dangerous zones like poisonous region or cave-in..

  • PDF

Experiment of KOMPSAT-3/3A Absolute Radiometric Calibration Coefficients Estimation Using FLARE Target (FLARE 타겟을 이용한 다목적위성3호/3A호의 절대복사 검보정 계수 산출)

  • Kyoungwook Jin;Dae-Soon Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1389-1399
    • /
    • 2023
  • KOMPSAT-3/3A (K3/K3A) absolute radiometric calibration study was conducted based on a Field Line of sight Automated Radiance Exposure (FLARE) system. FLARE is a system, which has been developed by Labsphere, Inc. adopted a SPecular Array Radiometric Calibration (SPARC) concept. The FLARE utilizes a specular mirror target resulting in a simplified radiometric calibration method by minimizing other sources of diffusive radiative energies. Several targeted measurements of K3/3A satellites over a FLARE site were acquired during a field campaign period (July 5-15, 2021). Due to bad weather situations, only two observations of K3 were identified as effective samples and they were employed for the study. Absolute radiometric calibration coefficients were computed using combined information from the FLARE and K3 satellite measurements. Comparison between the two FLARE measurements (taken on 7/7 and 7/13) showed very consistent results (less than 1% difference between them except the NIR channel). When additional data sets of K3/K3A taken on Aug 2021 were also analyzed and compared with gain coefficients from the metadata which are used by current K3/K3A, It showed a large discrepancy. It is assumed that more studies are needed to verify usefulness of the FLARE system for the K3/3A absolute radiometric calibration.

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.

Advances in Shoreline Detection using Satellite Imagery (위성영상을 활용한 해안선 탐지 연구동향)

  • Tae-Soon Kang;Ho-Jun Yoo;Ye-Jin Hwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.598-608
    • /
    • 2023
  • To comprehensively grasp the dynamic changes in the coastal terrain and coastal erosion, it is imperative to incorporate temporal and spatial continuity through frequent and continuous monitoring. Recently, there has been a proliferation of research in coastal monitoring using remote sensing, accompanied by advancements in image monitoring and analysis technologies. Remote sensing, typically involves collection of images from aircraft or satellites from a distance, and offers distinct advantages in swiftly and accurately analyzing coastal terrain changes, leading to an escalating trend in its utilization. Remote satellite image-based coastal line detection involves defining measurable coastal lines from satellite images and extracting coastal lines by applying coastal line detection technology. Drawing from the various data sources surveyed in existing literature, this study has comprehensively analyzed encompassing the definition of coastal lines based on satellite images, current status of remote satellite imagery, existing research trends, and evolving landscape of technology for satellite image-based coastal line detection. Based on the results, research directions, on latest trends, practical techniques for ideal coastal line extraction, and enhanced integration with advanced digital monitoring were proposed. To effectively capture the changing trends and erosion levels across the entire Korean Peninsula in future, it is vital to move beyond localized monitoring and establish an active monitoring framework using digital monitoring, such as broad-scale satellite imagery. In light of these results, it is anticipated that the coastal line detection field will expedite the progression of ongoing research practices and analytical technologies.