• 제목/요약/키워드: Satellite-derived solar irradiance

검색결과 15건 처리시간 0.02초

기상청 천리안 위성 자료를 활용한 태양광 기상자원 특성 및 오차 분석 (Characteristics and Error Analysis of Solar Resources Derived from COMS Satellite)

  • 이수향;김연희
    • 대기
    • /
    • 제30권1호
    • /
    • pp.59-73
    • /
    • 2020
  • The characteristics of solar resources in South Korea were analyzed by comparing the solar irradiance derived from COMS (Communication, Ocean and Meteorological Satellite) with in-situ ground observation data (Pyranometer). Satellite-derived solar irradiance and in-situ observation showed general coincidence with correlation coefficient higher than 0.9, but the satellite observations tended to overestimate the radiation amount compared to the ground observations. Analysis of hourly and monthly irradiance showed that relatively large discrepancies between the satellite and ground observations exist after sunrise and during July~August period which were mainly attributed to uncertainties in the satellite retrieval such as large atmospheric optical thickness and cloud amount. But differences between the two observations did not show distinct diurnal or seasonal cycles. Analysis of regional characteristics of solar irradiance showed that differences between satellite and in-situ observations are relatively large in metrocity such as Seoul and coastal regions due to air pollution and sea salt aerosols which act to increase the uncertainty in the satellite retrieval. It was concluded that the satellite irradiance data can be used for assessment and prediction of solar energy resources overcoming the limitation of ground observations, although it still has various sources of uncertainty.

천리안 위성 영상 기반 태양자원지도를 활용한 다양한 정의에서의 청천지수 특성 분석 (Analysis of Clear Sky Index Defined by Various Ways Using Solar Resource Map Based on Chollian Satellite Imagery)

  • 김창기;김현구;강용혁;윤창열
    • 한국태양에너지학회 논문집
    • /
    • 제39권3호
    • /
    • pp.47-57
    • /
    • 2019
  • Clear sky indices were estimated by various ways based on in-situ observation and satellite-derived solar irradiance. In principle, clear sky index defined by clear sky solar irradiance indicates the impacts of cloud on the incoming solar irradiance. However, clear sky index widely used in energy sciences is formulated by extraterrestrial irradiance, which implies the extinction of solar irradiance due to mainly aerosol, water vapor and clouds drops. This study examined the relative difference of clear sky indices and then major characteristics of clear sky irradiance when sky is clear are investigated. Clear sky is defined when clear sky index based on clear sky irradiance is higher than 0.9. In contrast, clear sky index defined by extraterrestrial irradiance is distributed between 0.4 and 0.8. When aerosol optical depth and air mass coefficient are relative larger, solar irradiance is lower due to enhanced extinction, which leads to the lower value of clear sky index defined by extraterrestrial irradiance.

위성영상 기반 일사량을 활용한 대전지역 표준기상년 데이터 생산 (Derivation of Typical Meteorological Year of Daejeon from Satellite-Based Solar Irradiance)

  • 김창기;김신영;김현구;강용혁;윤창열
    • 한국태양에너지학회 논문집
    • /
    • 제38권6호
    • /
    • pp.27-36
    • /
    • 2018
  • Typical Meteorological Year Dataset is necessary for the renewable energy feasibility study. Since National Renewable Energy Laboratory has been built Typical Meteorological Year Dataset in 1978, gridded datasets taken from numerical weather prediction or satellite imagery are employed to produce Typical Meteorological Year Dataset. In general, Typical Meteorological Year Dataset is generated by using long-term in-situ observations. However, solar insolation is not usually measured at synoptic observing stations and therefore it is limited to build the Typical Meteorological Year Dataset with only in-situ observation. This study attempts to build the Typical Meteorological Year Dataset with satellite derived solar insolation as an alternative and then we evaluate the Typical Meteorological Year Dataset made by using satellite derived solar irradiance at Daejeon ground station. The solar irradiance is underestimated when satellite imagery is employed.

인공위성영상 예측기법을 적용한 태양광에너지 이용가능성 평가에 관한 연구 (A Study on the Feasibility Evaluation for the Use of Solar Photovoltaic Energy in Korean Peninsula Using a Satellite Image Forecasting Method)

  • 조덕기;강용혁;오정무
    • 한국태양에너지학회 논문집
    • /
    • 제25권2호
    • /
    • pp.9-17
    • /
    • 2005
  • Images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. For the validation, estimated solar radiation fluxes are compared with observed solar radiation fluxes at 16 sites over the Korean peninsular from January 1982 to December 2004. Estimated solar radiation fluxes show reliable results for estimating the global radiation with average deviation of -7.8 to +7.0% from the measured values and the yearly averaged horizontal global insolation of Korean peninsula was turned out to be $3.56kW/m^{2}/day$.

STANDARIZING THE EXTRATERRESTRIAL SOLAR IRRADIANCE SPECTRUM FOR CAL/VAL OF GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.86-89
    • /
    • 2006
  • Ocean color remote sensing community currently uses the different solar irradiance spectra covering the visible and near-infrared in the calibration/validation and deriving products of ocean color instruments. These spectra derived from single and / or multiple measurements sets or models have significant discrepancies, primarily due to variation of the solar activity and uncertainties in the measurements from various instruments and their different calibration standards. Thus, it is prudent to examine model-to-model differences and select a standard reference spectrum that can be adopted in the future calibration and validation processes, particularly of the first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meterological Satellite (COMS) planned to be launched in 2008. From an exhaustive survey that reveals a variety of solar spectra in the literature, only eight spectra are considered here seeing as reference in many remote sensing applications. Several criteria are designed to define the reference spectrum: i.e., minimum spectral range of 350-1200nm, based completely or mostly on direct measurements, possible update of data and less errors. A careful analysis of these spectra reveals that the Thuillier 2004 spectrum seems to be very identical compared to other spectra, primarily because it represents very high spectral resolution and the current state of the art in solar irradiance spectra of exceptionally low uncertainty ${\sim}0.1%.$ This study also suggests use of the Gueymard 2004 spectrum as an alternative for applications of multispectral/multipurpose satellite sensors covering the terrestrial regions of interest, where it provides spectral converge beyond 2400nm of the Thuillier 2004 spectrum. Since the solar-activity induced spectral variation is about less than 0.1% and a large portion of this variability occurs particularly in the ultraviolet portion of the electromagnetic spectrum that is the region of less interest for the ocean color community, we disregard considering this variability in the analysis of solar irradiance spectra, although determine the solar constant 1366.1 $Wm^{-2}$ to be proposed for an improved approximation of the extraterrestrial solar spectrum in the visible and NIR region.

  • PDF

인공위성을 이용한 한반도에서의 태양에너지 이용가능성 분석에 관한 연구 (A Study on the Feasibility Analysis for the Use of Solar Energy in Korea Using a Satellite)

  • 조덕기;강용혁;오정무
    • 한국태양에너지학회 논문집
    • /
    • 제22권3호
    • /
    • pp.21-30
    • /
    • 2002
  • Images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. For the validation. estimated solar radiation fluxes are compared with observed solar radiation fluxes at 16 sites over the Korean peninsular from January 1982 to December 2000. Estimated solar radiation fluxes show reliable results for estimating the global radiation with average deviation of -5.6 to +2.8% from the measured values and the yearly averaged horizontal global insolation of Korean peninsula was turned out to be $3.038kcal/m^2.day$.

한반도 태양에너지 자원의 재평가 (Revaluation of Solar Radiation Resources in Korean Peninsular)

  • 조덕기;윤창열;김광득;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.50-55
    • /
    • 2009
  • Images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. For the validation, estimated solar radiation fluxes are compared with observed solar radiation fluxes at 16 sites over the Korean peninsular from January 1982 to December 2007. Estimated solar radiation fluxes show reliable results for estimating the global radiation with average deviation of -7.58 to +3.8% from the measured values and the yearly averaged horizontal global insolation of Korean peninsula was turned out to be $3.59kW/m^2/day$.

  • PDF

인공위성을 이용한 국내 일사량 분포 예측 (Estimation of Solar Radiation Distribution in Korea Using a Satellite)

  • 조덕기;윤창열;김광득;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.99-106
    • /
    • 2011
  • Since the solar energy resource is the main input for sizing any solar photovoltaic system, it is essential to utilize the solar radiation data as an application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 at 16 different locations in Korea and for the more detailed analysis, images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth"s surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. From the results, the measured data has been collected at 16 different stations and estimated using satellite at 23 different stations over the South Korea from 1982 to 2009. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is 3.56 kWh/ $m^2$/day and estimated solar radiation fluxes show reliable results for estimating the global radiation with average deviation of -7.27 to +3.65% from the measured values.

국내 태양에너지 자원 정밀분석 (A Detailed Analysis of Solar Radiation Resources in Korea)

  • 조덕기;윤창열;김광득;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.63.1-63.1
    • /
    • 2010
  • Since the solar energy resource is the main input for sizing any solar photovoltaic system and solar thermal power system, it is essential to utilize the solar radiation data as a application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 at 16 different locations in Korea and for the more detailed analysis, Images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. From the results, the measured data has been collected at 16 different stations and estimated using satellite at 23 different stations over the South Korea from 1982 to 2009. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is $3.56kWh/m^2/day$.

  • PDF

남한의 태양에너지 자원 정밀조사 (A Detailed Investigation of Solar Radiation Resources in South Korea)

  • 조덕기;윤창열;김광득;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.59-62
    • /
    • 2011
  • The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 at 16 different locations in Korea and for the more detailed analysis, images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth I s surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. From the results, the measured data has been collected at 16 different stations and estimated using satellite at 23 different stations over the South Korea from 1982 to 2000. The Result of analysis shows that the armual-average daily global radiation on the horizontal surface is $3.56kWh/m^2/day$ and Estimated solar radiation fluxes show reliable results for estimating the global radiation with average deviation of -7.27 to +3.65% from the measured values.

  • PDF