• Title/Summary/Keyword: Satellite data validation

Search Result 223, Processing Time 0.024 seconds

Comparison between Neural Network and Conventional Statistical Analysis Methods for Estimation of Water Quality Using Remote Sensing (원격탐사를 이용한 수질평가시의 인공신경망에 의한 분석과 기존의 회귀분석과의 비교)

  • 임정호;정종철
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.107-117
    • /
    • 1999
  • A comparison of a neural network approach with the conventional statistical methods, multiple regression and band ratio analyses, for the estimation of water quality parameters in presented in this paper. The Landsat TM image of Lake Daechung acquired on March 18, 1996 and the thirty in-situ sampling data sets measured during the satellite overpass were used for the comparison. We employed a three-layered and feedforward network trained by backpropagation algorithm. A cross validation was applied because of the small number of training pairs available for this study. The neural network showed much more successful performance than the conventional statistical analyses, although the results of the conventional statistical analyses were significant. The superiority of a neural network to statistical methods in estimating water quality parameters is strictly because the neural network modeled non-linear behaviors of data sets much better.

Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011 (위성 자료를 이용한 도시지역 극치강우 모니터링: 2011년 7월 집중호우를 중심으로)

  • Yoon, Sun-Kwon;Park, Kyung-Won;Kim, Jong Pil;Jung, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.371-384
    • /
    • 2014
  • This study developed a new algorithm of extreme rainfall extraction based on the Communication, Ocean and Meteorological Satellite (COMS) and the Tropical Rainfall Measurement Mission (TRMM) Satellite image data and evaluated its applicability for the heavy rainfall event in July-2011 in Seoul, South Korea. The power-series-regression-based Z-R relationship was employed for taking into account for empirical relationships between TRMM/PR, TRMM/VIRS, COMS, and Automatic Weather System(AWS) at each elevation. The estimated Z-R relationship ($Z=303R^{0.72}$) agreed well with observation from AWS (correlation coefficient=0.57). The estimated 10-minute rainfall intensities from the COMS satellite using the Z-R relationship generated underestimated rainfall intensities. For a small rainfall event the Z-R relationship tended to overestimated rainfall intensities. However, the overall patterns of estimated rainfall were very comparable with the observed data. The correlation coefficients and the Root Mean Square Error (RMSE) of 10-minute rainfall series from COMS and AWS gave 0.517, and 3.146, respectively. In addition, the averaged error value of the spatial correlation matrix ranged from -0.530 to -0.228, indicating negative correlation. To reduce the error by extreme rainfall estimation using satellite datasets it is required to take into more extreme factors and improve the algorithm through further study. This study showed the potential utility of multi-geostationary satellite data for building up sub-daily rainfall and establishing the real-time flood alert system in ungauged watersheds.

Validation of COMS/MI Aerosol Optical Depth Products Using Aerosol Robotic Network (AERONET) Observations Over East Asia (동아시아 지역의 AERONET 관측자료를 이용한 천리안 위성 기상탑재체의 에어로솔 광학두께 산출물의 검증)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.507-517
    • /
    • 2018
  • Aerosol optical depth (AOD) data retrieved by the Communication, Ocean and Meteorological Satellite (COMS) during 2011-2014 were compared with AOD measurements from 134 Aerosol Robotic Network (AERONET) sites over the East Asia. Overall, COMS and AERONET AODs were weakly correlated (R = 0.297). The agreement between COMS and AERONET AODs was improved when data from near Korean peninsula sites were selected (R = 0.475). Regression analysis results for each AERONET site are vary from R=0.026 at AOE_Baotou to 0.905 at DRAGON_Anmyeon. It was also shown that the bias in COMS AOD was not systematic with respect to effective radius, precipitable water, surface reflectance, and sun zenith angle. Together, these results suggest that COMS AOD measurements may be suitable for near Korea. Finally, the current results will help to improve the retrieval algorithm and vary when using alternative COMS AOD version in the future.

Variation of the Sea Surface Height around the Korean Peninsula with the Use of Multi-satellite Data (Topex/Poseidon, Jason-1 , ERS, Envisat) and its Association with Sea Surface Temperature (복합위성자료(Topex/Poseidon, Jason-1, ERS, Envisat)를 이용한 한반도 주변해역에서의 해수면 고도 변화와 해수면 온도의 상관성 연구)

  • Jang, Sae-Rom;Jeong, Gi-Yong;Kim, Ki-Young;Ha, Kyung-Ja
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.177-182
    • /
    • 2007
  • 한반도 주변해역에서의 해수면 고도는 1993년부터 2005년까지의 기간 동안 연평균 3.89 mm $yr^{-1}$ 상승하였으며, 이는 전세계 해수면 상승률의 1.3배에 해당한다. 본 연구에서는 AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic data)에서 제공하는 복합위성자료 (Topex/Poseidon, Jason-1, ERS, Envisat)인 DT-MSLA (Delayed Time - Maps of Sea Level Anomalies)를 이용하여 동해와 황해, 남해, 한국해협에서의 해수면 고도 변화를 연구하였다. 해수면 고도의 평균적인 변화는 증가하는 경향을 보임과 동시에, 여름에는 $4{\sim}5$년,겨울에는 3년의 주기성을 가지고 진동하였다. 조화분석을 통하여 해수면 고도와 해수면 온도의 연주기 모드와 반년주기 모드의 진폭과 위상을 나타내었다. 해수면 고도의 연주기 진폭은 한반도 주변해역에서 남동쪽이 높게,북서쪽이 낮게 나타나는 반면, 해수면 온도는 이와는 반대의 분포를 보였다. 월별 해수면 고도와 해수면 온도의 상관을 구한 결과,$6{\sim}8$월에 동해와 남해에서 1 / 2달 시간지연 일 때,상관계수가 0.7정도로 높게 나타났다. 이러한 결과를 통해 여름철 동해와 남해가 쿠로시오 해류의 영향을 크게 받고 있음을 짐작할 수 있다.

  • PDF

Retrieval of Thermal Tropopause Height using Temperature Profile Derived from AMSU-A of Aqua Satellite and its Application (Aqua 위성 AMSU-A 고도별 온도자료를 이용한 열적 대류권계면 고도 산출 및 활용)

  • Cho, Young-Jun;Shin, Dong-Bin;Kwon, Tae-Yong;Ha, Jong-Chul;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.523-532
    • /
    • 2014
  • In this study, thermal tropopause height defined from WMO (World Meteorological Organization) using temperature profile derived from Advance Microwave Sounding Unit-A (AMSU-A; hereafter named AMSU) onboard EOS (Earth Observing System) Aqua satellite is retrieved. The temperature profile of AMSU was validated by comparison with the radiosonde data observed at Osan weather station. The validation in the upper atmosphere from 500 to 100 hPa pressure level showed that correlation coefficients were in the range of 0.85~0.97 and the bias was less than 1 K with Root Mean Square Error (RMSE) of ~3 K. Thermal tropopause height was retrieved by using AMSU temperature profile. The bias and RMSE were found to be -5~ -37 hPa and 45~67 hPa, respectively. Correlation coefficients were in the range of 0.5 to 0.7. We also analyzed the change of tropopause height and temperature in middle troposphere in the extreme heavy rain event (23 October, 2003) associated with tropopause folding. As a result, the distinct descent of tropopause height and temperature decrease of ~8 K at 500 hPa altitude were observed at the hour that maximum precipitation and maximum wind speed occurred. These results were consistent with ERA (ECMWF Reanalysis)-Interim data (potential vorticity, temperature) in time and space.

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

Monitoring and Analysis of Galileo Services Performance using GalTeC

  • Su, H.;Ehret, W.;Blomenhofer, H.;Blomenhofer, E.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.235-240
    • /
    • 2006
  • The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.

  • PDF

Operational Ship Monitoring Based on Multi-platforms (Satellite, UAV, HF Radar, AIS) (다중 플랫폼(위성, 무인기, AIS, HF 레이더)에 기반한 시나리오별 선박탐지 모니터링)

  • Kim, Sang-Wan;Kim, Donghan;Lee, Yoon-Kyung;Lee, Impyeong;Lee, Sangho;Kim, Junghoon;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.379-399
    • /
    • 2020
  • The detection of illegal ship is one of the key factors in building a marine surveillance system. Effective marine surveillance requires the means for continuous monitoring over a wide area. In this study, the possibility of ship detection monitoring based on satellite SAR, HF radar, UAV and AIS integration was investigated. Considering the characteristics of time and spatial resolution for each platform, the ship monitoring scenario consisted of a regular surveillance system using HFR data and AIS data, and an event monitoring system using satellites and UAVs. The regular surveillance system still has limitations in detecting a small ship and accuracy due to the low spatial resolution of HF radar data. However, the event monitoring system using satellite SAR data effectively detects illegal ships using AIS data, and the ship speed and heading direction estimated from SAR images or ship tracking information using HF radar data can be used as the main information for the transition to UAV monitoring. For the validation of monitoring scenario, a comprehensive field experiment was conducted from June 25 to June 26, 2019, at the west side of Hongwon Port in Seocheon. KOMPSAT-5 SAR images, UAV data, HF radar data and AIS data were successfully collected and analyzed by applying each developed algorithm. The developed system will be the basis for the regular and event ship monitoring scenarios as well as the visualization of data and analysis results collected from multiple platforms.

Streamflow sensitivity to land cover changes: Akaki River, Ethiopia

  • Mitiku, Dereje Birhanu;Kim, Hyeon Jun;Jang, Cheol Hee;Park, Sanghyun;Choi, Shin Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.49-49
    • /
    • 2016
  • The impact of land cover changes on streamflow of the Akaki catchment will be assessed using Soil and Water Assessment Tool (SWAT) model. The study will analyze the historical land cover changes (1993 to 2016) that have taken place in the catchment and its effect on the streamflow of the study area. Arc GIS will be used to analysis the satellite images obtained from the United States Geological Survey (USGS). To investigate the impact of land cover change on streamflow the model set up will be done using readily available spatial and temporal data, and calibrated against measured discharge. Two third of the data will be used for model calibration (1993?2000) and the remaining one-third for model validation (2001?2004). Model performance will be evaluated by using Nash and Sutcliff efficiency (NS) and coefficient of determination (R2). The calibrated model will be used to assess two land cover change (2002 and 2016) scenarios and its likely impacts of land use changes on the runoff will be quantified. The evaluation of the model response to these changes on streamflow will be presented properly. The study will contribute a lot to understand land use and land cover change on streamflow. This enhances the ability of stakeholder to implement sound policies to minimize undesirable future impacts and management alternatives which have a significant role in future flood control of the study area.

  • PDF

Evaluation of Sensitivity and Retrieval Possibility of Land Surface Temperature in the Mid-infrared Wavelength through Radiative Transfer Simulation (복사전달모의를 통한 중적외 파장역의 민감도 분석 및 지표면온도 산출 가능성 평가)

  • Choi, Youn-Young;Suh, Myoung-Seok;Cha, DongHwan;Seo, DooChun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1423-1444
    • /
    • 2022
  • In this study, the sensitivity of the mid-infrared radiance to atmospheric and surface factors was analyzed using the radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN6)'s simulation data. The possibility of retrieving the land surface temperature (LST) using only the mid-infrared bands at night was evaluated. Based on the sensitivity results, the LST retrieval algorithm that reflects various factors for night was developed, and the level of the LST retrieval algorithm was evaluated using reference LST and observed LST. Sensitivity experiments were conducted on the atmospheric profiles, carbon dioxide, ozone, diurnal variation of LST, land surface emissivity (LSE), and satellite viewing zenith angle (VZA), which mainly affect satellite remote sensing. To evaluate the possibility of using split-window method, the mid-infrared wavelength was divided into two bands based on the transmissivity. Regardless of the band, the top of atmosphere (TOA) temperature is most affected by atmospheric profile, and is affected in order of LSE, diurnal variation of LST, and satellite VZA. In all experiments, band 1, which corresponds to the atmospheric window, has lower sensitivity, whereas band 2, which includes ozone and water vapor absorption, has higher sensitivity. The evaluation results for the LST retrieval algorithm using prescribed LST showed that the correlation coefficient (CC), the bias and the root mean squared error (RMSE) is 0.999, 0.023K and 0.437K, respectively. Also, the validation with 26 in-situ observation data in 2021 showed that the CC, bias and RMSE is 0.993, 1.875K and 2.079K, respectively. The results of this study suggest that the LST can be retrieved using different characteristics of the two bands of mid-infrared to the atmospheric and surface conditions at night. Therefore, it is necessary to retrieve the LST using satellite data equipped with sensors in the mid-infrared bands.