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Abstract : A comparison of a neural network approach with the conventional statistical methods,
multiple regression and band ratio analyses, for the estimation of water quality parameters is presented in
this paper. The Landsat TM image of Lake Daechung acquired on March 18, 1996 and the thirty in-situ
sampling data sets measured during the satellite overpass were used for the comparison. We employed a '
three-layered and feedforward network trained by backpropagation algorithm. A cross validation was
applied because of the small number of training pairs available for this study. The neural network showed
much more successful performance than the conventional statistical analyses, although the results of the
conventional statistical analyses were significant. The superiority of a neural network to statistical methods
in estimating water quality parameters is strictly because the neural network modeled non-linear behaviors
of data sets much better.
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1. Introduction

Recently, water pollution has become a major
global environmental problem. It is not just a
simple water problem but a complex one that
affects a wide range of our society from human
health and to our ecosystem (Jeong, 1999). Among
various water pollution problems, lakes are
especially easily polluted because of their
geographical feature of being a large closed inland
body of the water and their stagnant nature. Once
they are polluted, a considerable amount of time
and money is required to clear the polluted water
quality. In order to prevent worsening the water
pollution, continual water quality monitoring is
required. Major water quality parameters include
chlorophyll-a, suspended sediments (SS), and
transparency. The traditional method used to
estimate these parameters has been in-situ
sampling aboard ship followed by the laboratory
measurements. However, large amounts of time
and cost for the sampling cruises were limiting
factors. Remote sensing method as the estimator of
these water quality parameters, with vast spatial
range and multi temporal range, has been a
powerful tool as an alterative to traditional in-situ
sampling method by ship (Khorram and Cheshire,
1983; Baban, 1993, 1997; Gitelson et al., 1996).

To estimate the levels of surface chlorophyll-a,
SS and transparency by radiometric measure-
ments, the transfer function which is the
relationship between the optical properties of the
parameters and the radiances received from
satellite sensor must first be modeled. However,
the transfer function is often hard to express
theoretically because of its non-linear behaviors. In
such cases, the transfer function must be modeled
from the comparison between the measurements

by in-situ sampling and the measurements by

satellite sensor using regression analysis or
regression-like techniques (Keiner, 1997).

To estimate water quality, regression analysis
as the common empirical method of modeling the
transfer function has been extensively studied
since 1980s (Whitlock et al., 1982; Gordon et al.,
1983; Lathrop and Lillesand, 1986; Tassan, 1993;
Baban, 1993; and Pattiaratchi et al., 1994).
Combinations of bands, or ratios of bands, are
used to create empirical algorithms relating in-situ
sampling data and radiances received from
satellite sensor. However, regression analysis has
limitations because of the non-linear property of
these relationships (Gordon et al., 1983;
Krasnopolsky et al., 1995). However, neural
networks can flexibly model a variety of non-
linear behavior and have been shown to be useful
in modeling a large range of transfer functions
(Thiria et al., 1993; Krasnopolsky et al., 1995).

In this study, we used a neural network to
model the transfer function between the levels of
chlorophyll-a, SS and transparency and the
radiances received at the Landsat TM sensor. In
addition, the comparison between the neural
network and the conventional statistical methods
including multiple regression and band ratio

analyses has been performed.

2. Neural Networks

Artificial neural networks were originally
developed to model the functioning of human
brains. The principles found in the brain and used
in neural networks are parallel and distributed
processing which means that information is not
processed serially and is not stored at one fixed
location (Bischof et al., 1992). These days neural
networks are used for many application fields
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such as classification, pattern recognition, signal
processing, etc., and even on remote sensing
(Augusteijn and Warrender, 1998; Zhang and
Scofield, 1994). In this study, we employ a three-
layered and feedforward network by
backpropagation training algorithm.

There are an input layer, one hidden layer, and
an output layer, each containing at least one node,
which is called neuron as it performs neuron-like
functions. It has been proven that a neural
network with one hidden layer, no matter how
complex it is can represent any function. This is
known as Kolmogorov theorem (Beale and
Jackson, 1990). The input layer brings the
information to be processed into the network.
Neurons in the input layer are hypothetical in that
they do not themselves have inputs, and they do
no processing of any sort (Master, 1993). The term
feedforward means that information flows in one
direction only. Each neuron performs two
functions: a summation function dealing with
linear nature and an activation function handling
non-linear behavior. A summation function can be

stated as

n
Netj =IZ=: lWini + Bj

where X; are the inputs, Wj; are the weights
associated with each neuron connection, and B; is
a bias associated with neuron j. These inputs to
the neuron are multiplied by their associated
weights, summed and added to the bias. This sum

is used in an activation function as

2= fNet) = g v
where f is the activation function, which is
called squashing function. Although there is no
theoretical limit to what the value of a neuron can
be, the range of the activation function is usually
limited (Krasnopolsky et al., 1995). The most

common limits are (0, 1), while some range from
-1, 1.

Most current models use a sigmoid (S-shaped)
activation function. A sigmoid function can be
simply defined as a continuous, real valued
function, whose derivative is always positive, and
whose range is bounded. The most commonly
employed sigmoid function is the logistic
function. One advantage of this function is that its
derivative is easily found (Master, 1993). Other
sigmoid functions, such as the hyperbolic tangent,
are sometimes used. In most cases, it has been
found that the exact shape of the function has little
effect on the ultimate power of the network,
though it can have a significant impact on training
speed (Gose et al., 1996). For this study, a logistic

function was used for f.

3. Data Representation

To obtain the necessary data pairs used to train
the neural network and to establish the regression

algorithms, there must be in-situ data coincident
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Fig. 1. Map of Sampling Stations
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with Landsat TM overpass. In this study, there
were thirty sets of training pairs (in-situ values
and corresponding pixel values of each band)
available for use to Lake Daechung (Kim, 1997).
The sampling stations, which were determined by
ship-equipped GPS, are illustrated in Figure 1.

The TM image used for this study was acquired
on March 18, 1996. The first four bands(the visible
and near IR range) were used in this study, since
common algorithms estimating the concentrations
of chlorophyll-s and SS, and transparency have
been established with some of these four bands.

For the atmospheric correction, the normalization
method using histogram adjustment known as
common bulk correction was used (Ritchie et al.,
1990; Pattriaratchi et al., 1994). The radiance
received at the TM sensor consists of the water
leaving radiance including the radiance due to
atmospheric effects.

The TM image was geometrically corrected
using ER Mapper software, referencing to a
1:25,000 standard map. The image was then
resampled by nearest neighbor method, which
was chosen because it does not change the
original data values. The water area was extracted
by the threshold of pixel values of the near IR
band.

Input Layer

™I

™2

™3

™ 4

Hidden Layer

4. Network Architecture and Training

Figure 2 shows the network architecture used
in this study. Each input neuron corresponds to
three visible bands and a near IR band on the TM.
The output values from the input layer are
assigned to the three neurons in the hidden layer,
where the summation and activation functions are
performed. The output values of the hidden layer
are then used as the input values of the output
layer, which only performs the summation
functions without activation functions. The output
of this layer is the value of the parameters that we

are looking for.
J
Output =k;la)ka +p

For the output layer, wy are the weights
between the hidden layer and the output layer, 3
is the bias associated with the output layer. We
did not use the activation function in the output
layer, because the average error without activation
function is lower than that with activation
function.

The input values are fed into the network, and
the network calculates the output. This output o is
compared with known correct output ¢, and the
difference between them is the network error. To

modify the network output, the weights and

Output Layer

@ Output

Fig. 2. Neural Network Architecture of this study
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biases must be changed to decrease the network
error. Finding the weights and biases that
minimize this error is the goal of training. This is
accomplished through backpropagation
algorithm, which is that the network adjusts its
weights and biases, working back through the
network. We used the summed squared error

(SSE) function, which is defined as

1
SSE == 2.(t;—0;)?

i=1

B —

As the SSE is the function associated with the
weights, the change of the weights is done by the
following equation based on determining the

direction of change that will decrease the SSE.

@;(t+1) = wi(H) -n ?ai,E + afwi(t) — w;i(t-1)]

where 7 is a learning rate term and ¢ is a
momentum term. The learning rate 77 changes
during training to accelerate convergence towards
a minimum in the beginning; then it slows as the
network gets close to a minimum, to prevent
overshooting it. Using a momentum term in the
backpropagation algorithm may increase stability
when a large step size is used. The momentum
term can decrease oscillations that may slow
convergence. This training process operates by
repeatedly using the data in the training set to
change the network weights until an acceptable
error level is reached (Beale and Jackson, 1990;
Rao and Rao, 1995).

The neural network was trained several times

with different training and validation sets of

random initial weights. In some training sets the
network became trapped in a local minimum and
never converged under an acceptable error level.
After several trials with different initial weights
and biases, the combination of weights and biases
with the most successful result was used with the
entire TM image.

Before training, the input training sets were
scaled between (0, 1) by min/max of water areas.
This normalization helped the network converge
faster. The same scaling factors were used when
the actual TM image data was used with the
network.

In this study, a simple form of cross-validation
was used to validate the result of the training
algorithm (Kwok and Yeung, 1995). Twenty-four
pairs were used as the training set; the other six
pairs were used as a test set for validation. After
the network was trained, it was applied to the

entire TM image.

5. Results and Discussion

1) Band ratio algorithms

Several band ratios were applied to find the
best algorithm of estimating water quality. The
most successful algorithm for chlorophyll-s was a
third order function using the log (band 1/band 3)
as a independent variable. In case of SS, it was a
second order function using the same
independent variable with chlorophyll-a. For the

Table 1. Band ratio algorithm of each case (x = log(Band1/Band3))

Chlorophy II-¥ SS Transparency
. log(C) = log(SS) = log(T) =
Algorithm N ” ) ”
20.418x7 - 10.435x* +0.0309x + 0.7472 9.1856x~ -6.0959x + 1.2501 -5.7336x° +4.2411x - 0.2857
R? 0.5912 0.6833 0.6812
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transparency, it was also a second order function
using the same independent variable with
chlorophyll-a. The specific algorithms are shown
in Table 1.

2) Multiple Regression Analysis

Both linear and log-linear regressions were
performed for many different combinations of
bands and band ratios, to find the best
combination for estimating the parameters. The
best combination for chlorophyll-a was the use of
a linear equation including band 1, band 2, and
the ratio of band 1 and 3. In case of S5, it was a
linear equation consisting of band 1, band 2, and
band 3. For the transparency, the most successful
combination was a linear equation including band
1, band 2, and band 3. The algorithms are
described in Table 2.

To indicate the significance of band ratio
algorithms and multiple regression analysis
several parameters such as the coefficient of
determination (R2), RMS (root mean square) error,
and critical F-value at the 5% significance level

were calculated. This is shown in Table 5.

3) Neural Network Results

The neural network was trained several times
for the cases of chlorophyll-a, 55, and
transparency. The weights and biases that were
determined by the network to use for the entire
image were shown in Table 3. Table 4 gives the

training and test results of each case, which

indicates that the network was well fitted, not
overfitted. Figure 3 shows spatial distribution of
the concentration of chlorophyll-a in Lake
Daechung, which was determined by the neural
network. Figure 4 and 5 show spatial maps of the
SS concentration and transparency, respectively.
The range of chlorophyll-g in Lake Daechung
using the results of the neural network was
between 0.9 mg/m3 and 7.9 mg/m3, which was
relatively low concentration except high
concentration around the southeast in Lake
Daechung. Studies of Kim (1997) showed that on
the day of the TM overpass, Lake Dachung was in
the early stage of a phytoplankton bloom
dominated by the diatom Fragilaria spp. The spatial
distribution of chlorophyll-a assumed a similar
aspect of that of SS. However, in the upper stream
of Lake Daechung, the concentration of
chlorophyll-a appeared to be high at 8 mg/m3, as
expected, which resulted in the reflection and
scattering by SS. The concentration of SS was lower
than 8 mg/1 in most areas of Lake Daechung,
though it was very high about 40 mg/1 around the
southeast in Lake Daechung. Because in-situ
sampling was two days after raining around
upper stream area of Lake Daechung water
system about 50 mm, the areas around entrances
of main stream and branch streams had the
inflows of water with soil. In case of transparency,
secchi depth was between 3 and 4 m in most areas
of Lake Daechung. However, transparency was

lower than 1 m in the southeast areas of Lake

Table 2. Multiple regression algorithm of each case

Chlorophyll-or SS Transparency
C= 5.5136140.04949*band! SS= -12.44642+0.26854*band 1 T= 4.5768-0.12061*bandl
Algorithms +0.0421*band2 - 0.24771*band2 - 0.0325*band2
- 1.75787*(band 1/3) +2.50540*band3 - 0.10853*band3
R2 0.5013 0.8636 0.5537
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Table 3. Values of the weights and biases by the neural network

Parameters Chlorophyil-of SS Transparency
Wil 21.5372 21.2385 133527
w12 -1.0333 9.4057 00165
w13 3.8200 57937 -6.8620
w21 21,2661 278670 -16.7912
w22 36101 53489 132147
w23 211133 27.0098 432107
w3l 62318 33,0859 25,8765
Weights w32 241773 29.0915 -14.8333
W33 514380 78.4254 477606
W4l -10.3755 -8.9348 04941
w42 150324 -6.0763 13.9421
W43 123571 -6.3228 114330
ol -3.6598 27.7292 92281
w2 32412 104117 3.3956
w3 23745 3.9296 88576
bl 202249 -30.6077 152315
, b2 221257 -19.8197 1.5426
Biases b3 -19.9884 -10.0535 28.1297
Ji 22048 1.4700 0.3202

Table 4. Training and test errors per pattern in the neural

Daechung where the concentrations of

network chlorophyll-z and SS were high. In Figure 3, 4, and
perpattem |  Training 5, the concentrations of chlorophyll-a and SS in the
Test set error |  Total error . .
parameters set error areas of low transparency were high, which
Chiorophyll-of 0.067 0.069 0.067 clearly showed reverse-correlation of these water
58 0.218 0.233 0.221 quality parameters, especially S5 and
Transparency 0.082 0.079 0.082
transparency.
Table 5. Comparison among each performance
Band Ratio Multiple Regression
Algorithm Analysis Neural Network
R? 0.6551 0.5013 09613
Chlorophyll-cr RMS (mg/m3) 0.747 0.885 0.252
Critical F(F ratio) 1.37%105 (27.65) 2.82%106 (13.33)
R i 0.7916 0.8636 0.9947
SS RMS (mg/h) 5.125 4.086 0.897
Critical F(F ratio) 1.82%10°7 (29.12) 2.2¥10°11 (54.88)
R 0.4995 0.5537 0.9558
Transparency RMS (m) 0.818 0.756 0.239
L Critical F(F ratio) 1.99%10°7 (28.84) 8.92*%105 (10.75)
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Fig. 3. Spatial distribution of the concentration of
chlorophyil-a in Lake Daechung

36" 30N

O]
Fig. 4. Spatial distribution of the concentration of SS in
Lake Daechung

4) Comparison

The statistics for the comparison among the
results of the band ratio algorithm, the multiple
regression analysis, and the neural network are
shown in Table 5. The R2 and RMS errors for the

Fig. 5. Spatial distribution of the transparency in Lake
Daechung

neural network were calculated in the same way
as for the multiple regression analysis and the
band ratio algorithm. The RMS errors from the
neural network for chlorophyll-a, 55, and
transparency were 7.8 %, 14.6 %, and 9.8 %,
compared with 27.4 %, 66.7 %, and 31.1 % for the
multiple regression analysis of chlorophyll-g, SS,
and transparency, and with 23.1 %, 83.6 %, and
33.7 % for the band ratio analysis of chlorophyll-s,
SS, and transparency, respectively. From critical F
values at 5% significance level, the conventional
regression analyses were significant, though they
did poorer jobs than the neural network.

These statistics clearly show that conventional
statistical analyses gave worse performance than
the neural network in determining the
relationship between the water quality parameters
and the TM radiances for this study. Several
reasons for this include errors in the in-situ
sampling, errors in different time zone between
in-situ sampling and TM image acquirement, and
errors in the matchup data sets between the in-situ
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Fig. 6. Comparison of each result of (a) chlorophyll-a, (b}
SS, and (c) transparency

sampling locations and the TM image locations.
However, the main reason is the inability of the
conventional statistical methods to model the non-
linear behaviors of the transfer function.

A graphical comparison of these results is
illustrated in Figure 6. It shows the comparisons
between the in-situ measurements and calculated
: (a) chlorophyll-a, (b) SS, and (c)
transparency. These results also clearly show that

values

the neural network excelled multiple regression
and band ratio for the analysis of these data. This
is due to the non-linear property of the transfer
function as above mentioned. The results of
multiple regression analysis or band ratio analysis
were significant for predicting water quality
parameters, though they showed poorer
performance than those of the neural network.
This is because the data sets had small ranges,
which made conventional statistical methods

model non-linear behaviors partially.

6. Concluding Remarks

We set out in this paper to compare the neural
network approach with the other methods,
multiple regression and band ratio analyses, for
the estimates of water quality parameters in Lake
Daechung, one of major drinking water resources
in Korea. From the results, the neural network has
been proved to be more effective than the
conventional statistical analysis to estimate water
quality parameters. It mainly results from the non-
linear properties of data set, which can be
modeled well by neural network.

Our work shows that a neural network is a
powerful tool for remotely sensed image analysis.
However, it has a limitation which cannot apply

to another TM image of same location or other
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water area, because it was not fully trained over
the whole range of usual in-situ sampling data. In
other words, because a neural network is the
greatest tool in estimating something within the
range of training, it usually has weak generality.
For the establishment of a more substantial neural
network algorithm at a certain area, like Lake
Daechung in this study, more matchup data sets
of another imagery and in-situ sampling are
needed.
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