• Title/Summary/Keyword: Satellite and altimetry data

Search Result 37, Processing Time 0.035 seconds

Detection of Arctic Summer Melt Ponds Using ICESat-2 Altimetry Data (ICESat-2 고도계 자료를 활용한 여름철 북극 융빙호 탐지)

  • Han, Daehyeon;Kim, Young Jun;Jung, Sihun;Sim, Seongmun;Kim, Woohyeok;Jang, Eunna;Im, Jungho;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1177-1186
    • /
    • 2021
  • As the Arctic melt ponds play an important role in determining the interannual variation of the sea ice extent and changes in the Arctic environment, it is crucial to monitor the Arctic melt ponds with high accuracy. Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), which is the NASA's latest altimeter satellite based on the green laser (532 nm), observes the global surface elevation. When compared to the CryoSat-2 altimetry satellite whose along-track resolution is 250 m, ICESat-2 is highly expected to provide much more detailed information about Arctic melt ponds thanks to its high along-track resolution of 70 cm. The basic products of ICESat-2 are the surface height and the number of reflected photons. To aggregate the neighboring information of a specific ICESat-2 photon, the segments of photons with 10 m length were used. The standard deviation of the height and the total number of photons were calculated for each segment. As the melt ponds have the smoother surface than the sea ice, the lower variation of the height over melt ponds can make the melt ponds distinguished from the sea ice. When the melt ponds were extracted, the number of photons per segment was used to classify the melt ponds covered with open-water and specular ice. As photons are much more absorbed in the water-covered melt pondsthan the melt ponds with the specular ice, the number of photons persegment can distinguish the water- and ice-covered ponds. As a result, the suggested melt pond detection method was able to classify the sea ice, water-covered melt ponds, and ice-covered melt ponds. A qualitative analysis was conducted using the Sentinel-2 optical imagery. The suggested method successfully classified the water- and ice-covered ponds which were difficult to distinguish with Sentinel-2 optical images. Lastly, the pros and cons of the melt pond detection using satellite altimetry and optical images were discussed.

Distribution of Antarctic Sea Ice from Satellite Altimetry in the Weddell Sea: Preliminary Results

  • Kim, Jeong-Woo;Hong, Sung-Min;Hwang, Jong-Sun;Yoon, Ho-Il;Lee, Bang-Yong;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.255-261
    • /
    • 2002
  • We investigated the distribution of sea ice using Topex/Poseidon (T/P) and ERS-1 .ada. altimeter data in the northwest Weddell Sea, Antarctica, between the area $45-75^{\circ}W\;and\;55-66^{\circ}S$. Using the Geo_Bad_1 flag of the Merged GDR of the T/P, we classified the surface into ocean, land, and sea. Total 257 cycles of altimeter measurements between Oct. 1992 and Sep. 1999 (for nearly 2570 days) were used to analyze the distribution of the Antarctic sea ice. We then calculated the surface area of ice coverage using SUTM20 map projection to monitor the periodic variations. Each year, the maximum and minimum coverage of the sea ice were found in late August and February in the study area, respectively. We also studied the sea ice distribution using ERS-1 altimeter data between $45-75^{\circ}W\;and\;55-81.5^{\circ}S$ to compare with the T/P Using the Valid/Invalid flag of the Ocean Product, we analyzed the sea ice distribution between March and August of 1995, which showed very good coherence with the T/P measurements. Our preliminary results showed that the altimeter measurements can be effectively used to monitor the distribution of the sea ice in the polar region. However, the size of radar footprint, typically 2-6km depending on the roughness of the sea surface, may be too big to monitor the sharp boundary between ice and water/land. If more other altimeter mission data with dense coverage such as Geosat GM are analyzed together, this limitation can be significantly improved. If we also combine other microwave remote sensing data such as radiometer, and SSM/I, the result will be significantly enhanced.

Estimation of Sea Surface Height using Pressure-recording Inverted Echo Sounders Data in the Mindanao Current Region (민다나오 해류 해역에서 PIES 자료를 이용한 해수면 산출)

  • Hwang, Chorong;Min, Hong Sik;Jeon, Chanhyung;Kim, Dong Guk;Park, Jae-Hun
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.219-227
    • /
    • 2021
  • Sea surface height (SSH) anomalies were estimated from data recorded by four pressure-recording inverted echo sounders (PIESs) in the Mindanao Current region over a duration of 2 years from December 2017 to November 2019. The steric components of SSH anomalies were derived from round-trip acoustic travel times from the sea floor to the sea surface, whereas mass-loading components were derived from bottom pressures. Temporal variabilities in the total (steric and mass-loading) SSH anomalies and the steric component are extremely similar; this result implies that the steric component plays a major role in SSH anomalies in this region. Comparisons of the PIES-derived SSH anomalies with satellite-measured SSH anomalies reveal that the former has less temporal variability. Correlation coefficients between the total SSH anomalies and satellite-measured SSH anomalies are less than 0.85, which is lower than the correlation coefficient between the steric components and satellite-measured SSH anomalies.

Variability of Mesoscale Eddies in the Pacific Ocean Simulated by an Eddy Resolving OGCM of $1/12^{\circ}$

  • Yim B.Y.;Noh Y.;You S.H.;Yoon J.H.;Qiu B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.133-136
    • /
    • 2006
  • The mesoscale eddy field in the North Pacific Ocean, simulated by a high resolution eddy-resolving OGCM ($1/12^{\circ}C$ horizontal resolution), was analyzed, and compared with satellite altimetry data of TOPEX/Poseidon. High levels of eddy kinetic energy (EKE) appear near the Kurosho, North Equatorial Current (NEC), and Subtropical Countercurrent (STCC) in the western part of the subropical gyre. In particlure, it was found that the EKE level of the STCC has a well-defined annual cycle, but no distinct annual cycle of the EKE exists in any other zonal current of the North Pacific Ocean.

  • PDF

Computational Procedure for Sea Subface Topography of East Asian Marginal Seas using Geosat Altimeter Data (Geosat 고도계자료를 이용한 동아시아해역의 해면변위 산정법)

  • 최병호;고진석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.107-118
    • /
    • 1994
  • As satellite altimetry is being progressed to apply with heigher precision to maginal seas, it was necessary to improve correction procedures for tidal signals in altimetry with more accurate tidal model than well-known model of Schwiderski for studying marginal sea dynamics. As a first step, tidal regime of semidiurnal tides$(M_2,\;S_2,\;N_2,\;K_2)$ and diurnal tides$(K_1,\;O_1,\;P_1,\;Q_1)$ were computed with a finer details of formulation of tidal model over the East Asian Marginal Seas covering the Okhotsk Sea and South China Sea and part of Northwest Pacific Ocean with mesh resolutions of 1/6$^{\circ}$. Subsequently the computed sets of harmonic constants from the model were used to remove the tide in selected Sea Surface Heights from Geosat in the modelled region. Preliminary correction procedure suggested in the present study may be extensively used for obtaining Sea Surface Topography over the East Asian Marginal Seas, especially for the region where Schwiderski's harmonic constants are not available.

  • PDF

Precise Geoid Model for Korea from Gravity and GPS Data

  • Choi, Kwang-Sun;Won, Ji-Hoon;Shin, Young-Hong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.181-188
    • /
    • 2006
  • The data, methodology, and the resulting accurate gravimetric geoid model for the Korean Peninsula (latitude from 32˚ N to 40˚ N and longitude from 124˚ E to 131˚ E) are presented in this study. The types of used data were a high degree geopotential model (the EGM96 spherical harmonic coefficient set), a set of 12,615 land gravity observations, 1,056,075 shipborne gravity observations, and KMS2002 gravity anomalies from satellite altimetry. The remove-restore technique was successfully applied to combining the above mentioned data sets using up to degree and order 112 of the EGM96 coefficient. The residual geoid was calculated with residual Free-Air anomaly values using the spherical Stokes' formula with a 37-km integration cap radius. The geoid model was referred to WGS84 geodetic system and was tested using a set of GPS/levelling geoid undulations. The absolute accuracy is 0.132 m and some improvement compared to the PNU95 geoid model was found.

  • PDF

Analysis of a Structure of the Kunsan Basin in Yellow Sea Using Gravity and Magnetic Data (중자력 자료를 이용한 황해 군산분지의 지질 구조 해석)

  • Park, Gye-Soon;Choi, Jong-Keun;Koo, June-Mo;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.49-57
    • /
    • 2009
  • We studied a structure of the Kunsan basin in the Yellow Sea using ship-borne magnetic data and altimetry satellite-derived gravity data provided from the Scripps institution of oceanography in 2006. The gravity data was analyzed via power spectrum analysis and gravity inversion, and the magnetic data via analytic signal technique, pseudo-gravity transformation, and its inversion. The results showed that the depth of bedrock tended to increase as we approached the center of the South Central Sag in Kunsan basin and that the maximum and minimum of its depth were estimated to be about 6-8 km and 2 km, respectively. Inaddition, the observed high anomaly of gravity and magnetism was attributed to the intrusion of igneous rock of higher density than the surrounding basement rock in the center of South Central Sag, which was consistent with the interpretation of seismic data obtained in the same region.

Observation of Along-shore Current in the Northern East Sea by SARAL/AltiKa Sea Level Data (SARAL/Altika 해표면 고도 위성에 의한 동해 북부 연안 해류)

  • LEE, DONG-KYU;CHOI, JANG-GEUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.429-435
    • /
    • 2019
  • The drifters of the Global Drifter Program were deployed in the northern East Sea for two years from March 2015 to compare and validate currents estimated from sea-level measurements with the SARAL/AltiKa altimetry satellite mission, specially designed to accurately measure sea level in the near-coastal area. The collocated (less than 20 km apart) directly measured current from GPS locations every 30 minutes and the currents normal to the satellite tracks show a similar correlation in the area shallower than 200 m depth as the open ocean and it makes it possible to investigate the time variations of the current along the coast in the northern East sea, where direct observations of current are scarce. The Liman Current along the Siberian coast is found to be southward all year round, but the North Korean Cold Current flows southward only in the summer. The North Korean Cold Current south of the Musudan cape mostly flows to the south, but the current direction depends on the presence of an eddy around the coast of Musudan cape.

Statistical Characteristics of East Sea Mesoscale Eddies Detected, Tracked, and Grouped Using Satellite Altimeter Data from 1993 to 2017 (인공위성 고도계 자료(1993-2017년)를 이용하여 탐지‧추적‧분류한 동해 중규모 소용돌이의 통계적 특성)

  • LEE, KYUNGJAE;NAM, SUNGHYUN;KIM, YOUNG-GYU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.267-281
    • /
    • 2019
  • Energetic mesoscale eddies in the East Sea (ES) associated with strong mesoscale variability impacting circulation and environments were statistically characterized by analyzing satellite altimeter data collected during 1993-2017 and in-situ data obtained from four cruises conducted between 2015 and 2017. A total of 1,008 mesoscale eddies were detected, tracked, and identified and then classified into 27 groups characterized by mean lifetime (L, day), amplitude (H, m), radius (R, km), intensity per unit area (EI, $cm^2/s^2/km^2$), ellipticity (e), eddy kinetic energy (EKE, TJ), available potential energy (APE, TJ), and direction of movement. The center, boundary, and amplitude of mesoscale eddies identified from satellite altimeter data were compared to those from the in-situ observational data for the four cases, yielding uncertainties in the center position of 2-10 km, boundary position of 10-20 km, and amplitude of 0.6-5.9 cm. The mean L, H, R, EI, e, EKE, and APE of the ES mesoscale eddies during the total period are $95{\pm}104$ days, $3.5{\pm}1.5cm$, $39{\pm}6km$, $0.023{\pm}0.017cm^2/s^2/km^2$, $0.72{\pm}0.07$, $23{\pm}21TJ$, and $588{\pm}250TJ$, respectively. The ES mesoscale eddies tend to move following the mean surface current rather than propagating westward. The southern groups (south of the subpolar front) have a longer L, larger H, R, and higher EKE, APE; and stronger EI than those of the northern groups and tend to move a longer distance following surface currents. There are exceptions to the average characteristics, such as the quasi-stationary groups (the Wonsan Warm, Wonsan Cold, Western Japan Basin Warm, and Northern Subpolar Frontal Cold Eddy groups) and short-lived groups with a relatively larger H, higher EKE, and APE and stronger EI (the Yamato Coastal Warm, Central Yamato Warm, and Eastern Japan Basin Coastal Warm eddy groups). Small eddies in the northern ES hardly resolved using the satellite altimetry data only, were not identified here and discussed with potential over-estimations of the mean L, H, R, EI, EKE, and APE. This study suggests that the ES mesoscale eddies 1) include newly identified groups such as the Hokkaido and the Yamato Rise Warm Eddies in addition to relatively well-known groups (e.g., the Ulleung Warm and the Dok Cold Eddies); 2) have a shorter L; smaller H, R, and lower EKE; and stronger EI and higher APE than those of the global ocean, and move following surface currents rather than propagating westward; and 3) show large spatial inhomogeneity among groups.

Comparison of Sea Level Data from Topex/Poseidon in-situ Tide-Gauges in the East Sea (한반도 동해상에서의 Topex/Poseidon 고도자료와 현장 조위계 관측 자료의 비교연구)

  • Youn, Yong-Hoon;Kim, Na-Young;Kim, Ki-Hyun;Hwang, Jong-Sun;Kim, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2002
  • In an effort to properly assess the validity of spaceborne radar altimeter measurements, we made a direct comparison of two different sea surface heights (SSH) acquired by both Topex/Poseidon (T/P) satellite and in-situ tide-gauges (T/G). This comparative analysis was conducted using the data sets collected from three locations along the eastern coast of Korea which include: Ulleungdo, Pohang, and Sokcho. In the course of the analysis of satellite altimeter, information of SSH was extracted from the T/P MGDR data sets through the application of both atmospheric and geophysical corrections. To compare the T/P data sets in parallel basis, the T/G data sets were averaged using the measured values within the peripheral radius of 55km. When compared among different locations, the compatibility between the two methods was much more significant in an offshore location (Ulleungdo) than the two onshore locations (Pohang, Sokcho). If the low-pass filtered results were compared among the sites, the offshore site exhibited the best correlations between the two methods (correlation coefficient of 0.91) than those of the onshore sites. These large differences in the strength of correlations among different locations are due to the deformation of M2, S2, and K1 tidal components used in the tidal model. In case of the offshore location, the compatibility of the two different methods were improved systematically by the low-pass filtering with an increase of the filtering duration such as up to 200 days.