• Title/Summary/Keyword: Satellite System

Search Result 4,262, Processing Time 0.032 seconds

Quality Cost Mitigation Strategy through Satellite's Mission Assurance (임무보증활동을 통한 인공위성 품질비용 저감방안)

  • Kim, You-gwang;Lee, Woo-jun;Baek, Myung-jin;Chun, Young-Sik;Lee, Nak-young
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.41-46
    • /
    • 2015
  • The various risk factors that affected schedule, costs and mission success, etc. in development of the satellite. This paper derives the considerable "Cost of Quality" factors in the satellite development phase through the survey of practical techniques in respect of measurement of quality cost in the commercial products manufacturing, and proposes mitigation strategy of quality cost using the approach that can be minimized it.

Numerical Investigation of On-orbit Thermal Characteristics for Cube Satellite with Permanent Magnet Attitude Stabilization Method (영구자석 안정화 자세제어 방식이 적용된 큐브위성의 열적 특성분석)

  • Kang, Soo-JIn;Jung, Hyun-Mo;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.26-32
    • /
    • 2013
  • Passive attitude stabilization method has been widely usde for attitude determination and control of cube satellite due to its advantage of system simplicity. The permanent magnet installed on the cube satellite passively controls the attitude of the satellite such that the satellite is aligned with the earth magnetic field. In this paper, on-orbit thermal behavior of the cube satellite with the permanent magnet attitude stabilization method has been investigated through on-orbit thermal analysis. THe orbit profile obtained from the aforementioned attitude control method has been reflected in the analysis. The analysis results indicate that the thermal design proposed in this study is effective for satisfying the temperature requirements of the commericial mission equipments.

ENVIRONMENTAL TEST OF THE EQM PAYLOAD SYSTEM FOR THE COMMUNICATIONS AND BROADCASTING SATELLITE

  • Choi Jang Sup;Park Jong Heung;Eun Jong Won;Lee Seong Pal
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.368-371
    • /
    • 2004
  • ETRI has developed the EQM (Engineering Qualification model) payload system for the communications and broadcasting satellite (CBS) with Korean local companies. This paper describes a series of environmental tests such as vibration, thermal/thermal vacuum, and EMC tests. All the development processes including the design, implementation, integration and workmanship were verified and evaluated by these tests. The results of the functional tests and the compliance to the requirements are also presented. The technologies and heritage obtained from this development will be applied to the development of the payload system for the Korean communication satellite in the near future.

  • PDF

Electrical Ground Support Equipment(EGSE) Hardware Design for the Communication, Ocean & Metrological Satellite(COMS) (통신해양기상위성 전기적 지상 성능시험 장치 하드웨어 설계)

  • Cho, Young-Ho;Yang, Goon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.269-270
    • /
    • 2007
  • The COMS(Communication, Ocean & Meteorological Satellite) is the geostationary satellite which will be performing three main objectives such as meteorological service, ocean monitoring and Ka-band satellite communications. This paper reports on the hardware architecture of the system electrical ground support equipment(EGSE) for the COMS satellite. EGSE is used to check out satellite during the development prior to lunch. The EGSE represented in this paper consist of two parts. First, I will deal with the OCOE(Overall Check Out Equipment) system which controls and operates the all EGSE system. In second part, we will introduce the SCOE(Specific Check Out Equipment) systems which can test the specific subsystems of the COMS satellite.

  • PDF

Engineering Test Satellite, KITSAT-3, Program (저궤도 기술시험용 소형위성 우리별 3호 개발)

  • Park, Sung-Dong;Kim, Sung-Heon;Sung, Dan-Keun;Choi, Soon-Dal
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.907-909
    • /
    • 1995
  • The SaTReC is to develop, deploy, and operate a low Earth orbiting small satellite system, KITSAT-3, carrying a remote sensing payload, a space science payload, and a data collection system. Through the development of KITSAT-3, the SaTReC is to demonstrate the small satellite system which provides highly accurate attitude control, high speed data transmission, and a unique spacecraft configuration and to provide educational opportunities to Korean space industries and research institute. The KITSAT-3 is expected to be launched in the beginning of 1997 by Chinese Long March IV as a secondary payload into about 800 km's sunsynchronous orbit.

  • PDF

Performance of CDMA system in the Extended Suzuki Model of LEO Satellite (저궤도 위성의 Extended Suzuki 모델에서 CDMA 시스팀의 성능)

  • 박성조
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10A
    • /
    • pp.1521-1528
    • /
    • 2000
  • In this paper we analyze the performance of a DS/CDMA system in LEO mobile satellite channels. The channel uses the Extended Suzuki model which is the product of a Rician distribution having a LOS component and a lognormal distribution due to shadowing. We assume that the signal transmitted from the satellite to the mobile undergoes the same fading for the whole coverage of signal's beam. The average bit error probabilities of double coverage system is calculated in this paper. The interference resulting from the reference satellite is calculated for mobile located in the middle of the double coverage region whereas the additive interference from next-satellite is included for mobile located in the edge of the double coverage region. The performance of the mobile's receiving signal is dependent on shadowing and the interference of the next-satellite. We can obtain an obtain an improved average bit error probability by using dual diversity over the conventional correlated receiver for similar shadowing conditions in the coverage area of the satellite channel.

  • PDF

Design Considerations of a Lithium Ion Battery Management System (BMS) for the STSAT-3 Satellite

  • Park, Kyung-Hwa;Kim, Chol-Ho;Cho, Hee-Keun;Seo, Joung-Ki
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.210-217
    • /
    • 2010
  • This paper introduces a lithium ion battery management system (BMS) for the STSAT-3 satellite. The specifications of a lithium ion battery unit are proposed to supply power to the satellite and the overall electrical and mechanical designs for a lithium ion battery management system are presented. The structural simulation results will be shown to confirm the behavior of both the BMS and the cells.

Status and Technological Survey of Navigation Satellite Systems (위성항법시스템 위성체 운용 현황 및 기술 동향)

  • Yongrae Kim;Jeongrae Kim;Jong Yeoun Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.35-44
    • /
    • 2024
  • This investigation primarily focuses on the generational characteristics of satellites utilized in the existing Global Navigation Satellite System (GNSS) and Regional Navigation Satellite System (RNSS), with a central emphasis on comparing the operational status of the latest generation satellites. Variations among satellite generations in physical attributes, energy consumption, and timekeeping are observed, enabling an exploration of the developmental trends over successive generations. Through a comparative analysis of the latest generation satellites, particularly in terms of performance, this study aims to furnish essential insights into the satellites employed within each system. Consequently, it will contribute to a foundational understanding of the past, present, and future GNSS satellites.

Mission Control System for KOMPSAT-2 Operations (다목적 실용위성2호 관제시스템 운용)

  • Jeong, Won-Chan;Lee, Byeong-Seon;Lee, Sang-Uk;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 2006
  • The Mission Control System for KOMPSAT-2 was developed by ETRI and is being operated at Satellite Control Center at KARI to monitor and control KOMPSAT-2 (KOrea Multi-Purpose Satellite) which was launched in July 28th, 2006. MCE provides the functions such as telemetry reception and processing, telecommand generation and transmission, satellite tracking and ranging, orbit prediction and determination, attitude maneuver planning, satellite simulation, etc. KOMPSAT-2 is the successor of KOMPSAT-1 which is an earth-observation satellite. KOMPSAT-2 has higher resolution image taking ability due to MSC (Multi Spectral Camera) payload in the satellite and precise orbit and attitude determination by Mission Control System. It can produce one meter resolution image compared to six meter resolution image by KOMPSAT-1.

  • PDF

Effect of satellite link noise for satellite range measurement using tone method (Tone 방식을 사용한 위성 거리 측정에 대한 위성 링크 잡음의 영향)

  • Kim Young Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.9-16
    • /
    • 2005
  • The performance of satellite range measurement using tone method was analyzed in the presence of satellite link AWGN. The phase errors in range measurement are generated by AWGN of satellite up- and down-link and the degradations of satellite range measurement are dependent on the transmission mode and loop bandwidth of satellite measurement system. The analyzed effects for satellite measurement in presence of satellite link noise were also analyzed with the measured satellite range data via satellite range measurement system operating in satellite link AWGN. In RAU mode, the satellite range differences of 14.4 to 40.6 m were occurred according to the loop bandwidth of satellite range measurement system and the degradation of 0.3 dB compared with theoretical value was generated under condition of the signal-to-noise ratio of 43 dB. In RAU and TM mode, the performances of range measurement were approximately agreed to the that of RAU mode. In order to get the equal performance characteristics with RAU mode, the signal-to-noise ratio of satellite link for RAU and TM mode should be increased by signal power of 2.3 dB, which is a power loss due to transmission of telemetry signal.