• Title/Summary/Keyword: Satellite Structure

Search Result 789, Processing Time 0.037 seconds

Dynamic Behavior Responses and Investigation of a Small-Class Satellite Having Sandwich Panel Structures (샌드위치 패널 구조로 된 소형 위성의 동적거동 응답 및 연구)

  • Cho, Hee-Keun;Lee, Sang-Hyun;Cha, Won-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.771-780
    • /
    • 2012
  • Naro-science satellite which will be launched by KSLV-1 has been successfully developed. Naro-science satellite is a 100kg-class small size science satellite whose structure is composed of one of a typical light and high strength aluminum honeycomb sandwich panel. In this research, dynamic responses of the satellite with respect to the design requirements were investigated by means of real experiments and numerical finite element analyses. The core technologies of the structure design and analysis about fracture and safety has been obtained through a wide range of analyses and tests. The results obtained in this study can be significantly utilized for the next generation satellite development.

DESIGN CONSIDERATION OF MULTIPACTOR PHENOMENA BASED ON S-BAND DIPLEXER FOR SATELLITE APPLICATIONS

  • Choi Seung-Woon;Kim Day-Young;Kwon Ki-Ho;Chae Tae-Byeong;Lee Jong-In
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.360-363
    • /
    • 2004
  • This review is concerned with the MP (multipactor) phenomena of the diplexer for RFDU DM of next generation satellite. The MP discharge is serious problems to design RF components in space applications such ase damage of physical structure, performance degradation, and mission failure of the satellite. In this work, we employed the 3D finite element method (FEM) to calculate the critical gap points and adopted ESTEC curve, MP susceptibility zone, to analyze the maximum handling RF power in the diplexer. And this work also recommends that one should design the tx filter of the diplexer which is more wider bandwidth upto the points to escape the ears of the group delay especially the cavity type of RF components in space applications.

  • PDF

QPSK Modem Design of Satellite Air-defence Warning System (위성 전군방공경보체계 QPSK 모뎀 설계)

  • Kim, Younghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.755-761
    • /
    • 2015
  • Satellite Air-defence Warning System receives the aircraft/ballistic track information and air defense control command obtained from Master Control & Reporting Center (MCRC) and Air Missile Defence Cell (AMD Cell) Systems. It consists of terminal and control system to propagate track information and air defense control command control via the military satellite communications. In this paper, there were described track information, air defense control command, the frame structure of modem to transmit a voice information and modulation/demodulator design, network synchronization methods via the satellite network.

Thermal Characteristics of Hybrid Insert for Carbon Composite Satellite Structures

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.162-167
    • /
    • 2015
  • Composite sandwich structures are widely employed in various applications, due to their high specific stiffness and specific bending strength compared to solid panels. Lately, for that reason, the advanced composite sandwich structures are employed in satellite structures: materials should be as light as possible with the highest attainable performance. This study is majorly focused on inserts employed to the composite sandwich satellite structures. A new hybrid insert design was developed in precedent study to reduce the mass of the sandwich structure since the mass of the satellite structure is related to high launching cost [1]. In this study, the thermal characteristics and behavior of the precedently developed hybrid insert with carbon composite reinforcing web and the conventional partial insert were numerically investigated.

Finite Element Model Updating and Validation of Satellites for Coupled Load Analysis (연성하중해석 수행을 위한 인공위성 유한요소모델 보정 및 검증)

  • Lim, Jae Hyuk;Kim, Kyung-Won;Kim, Sung-Hoon;Hwang, Do-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.605-612
    • /
    • 2013
  • When developing medium satellites or large satellites, coupled load analysis(CLA) is performed in order to verify satellite design as a final assessment under launch environment. Maximum acceleration, gap between adjacent parts, internal loads obtained from CLA are used to assess the safety of satellite design by comparing them with the allowable loads of every component. To achieve reliable CLA results, satellite FE model have to be properly updated to match with the sine vibration test results. In this paper, the validation procedure of satellite FE model and its results are discussed.

Reliability Prediction of Satellite by Function Analysis (기능분석을 통한 인공위성의 신뢰도 예측)

  • Yoo, Ki-Hoon;Kim, Gi-Young;Ahn, Yeong-Gi;Cha, Dong-Won;Shin, Goo-Hwan;Kim, Dong-Guk;Chae, Jang-Soo;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2015
  • In this study, we propose reliability prediction of a satellite by function analysis. To do so, the intended functions of the satellite are derived from using function structure block diagram, and defined as main, sub, and detailed functions. Furthermore, in order to generate function and reliability structure table, reliability model rule, duty cycle, and types of switch are assigned to the classified functions. This study also establishes reliability block diagram and mathematical reliability models to schematize the relationship among the functions. The reliability of the classified function is estimated by calculating the failure rate of parts comprising them. Finally, we apply the proposed method to a small satellite as a case study. The result shows that the reliability for the detailed function and the sub function as well as the main function could be predicted quantitatively and accurately by the proposed approach.

Conceptual Design of Structure Subsystem for Geo-stationary Multi-purpose Satellite (정지궤도복합위성 구조계 개념설계)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Sung-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.110-115
    • /
    • 2012
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe launch environments. The launch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. Currently KARI(Korea Aerospace Research Institute) is developing Geo-KOMPSAT-2(Geostationary Earth Orbit KOrea Multi-Purpose Satellite) with technologies which were acquired during COMS(Communication, Ocean and Meteorological Satellite) development. As compared to COMS Geo-KOMPSAT-2 requires more propellant due to mass increase of Advanced Meteorological Payload with high resolution and increase of miss life, it is difficult to apply the design concept of COMS to Geo-KOMPSAT-2. This paper deals with conceptual design of Structural Subsystem for Geo-KOMPSAT-2.

A Study on Coaxial-Structure Waveguide High-Order Mode Coupler of Ku-Band satellite tracking system for UAV (무인기용 Ku 대역 위성추적 시스템의 동축구조 도파관 고차모드 커플러에 대한 연구)

  • Lee, Jaemoon;Lim, Jaesung;Ga, Deukhyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • In this paper, higher order coupler using small size waveguide which applicable for mobile Ku-band multimode monopulse satellite tracking antenna system, has been designed, implemented and tested. Proposed higher order mode coupler adopts a coaxial structure for low profile characteristic considering installation property to mobile satellite terminal system. In addition, by using proposed coupler, extracted tracking error signal pattern has measured and confirmed that required tracking accuracy is satisfied in desired frequency band. In the future, proposed coupler could utilize for multimode monopulse satellite tracking system for high tracking accuracy.

The Land Surface Temperature Analysis of Seoul city using Satellite Image (위성영상을 통한 서울시 지표온도 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • The propose of this study is to analyze the optimum spatial resolution of the urban spatial thermal environment structure and to evaluate of the possibility detection using aerial photographs and thermal satellite images. The proper techniques of the optimum spatial resolution for the urban spatial thermal environment structure were analyzed. Thermal infrared satellite image of Seoul city were used for the change rate of surface temperature variation and suggested to the spatial extent and effects of urban surface characteristics and spatial data was interpreted as regions. To extract the surface temperature, Landsat thermal infrared satellite image compared with an automatic weather station data and in the field of the measured temperature and surface temperature by thermal environment affects, the spatial domain has been verified. The surface temperature of the satellite images to extract after adjusting surface temperature isotherms were constructed. The changes in surface temperature from 2008 to 2012 the average surface temperature observation images of changing areas were divided into space. The results of this study are as follows: Through analysis of satellite imagery, Seoul city surface temperature change due to extraction comfort indices were classified into four grades. The comfort index indicative of the temperature of Gangnam-gu, $23.7{\sim}27.2(^{\circ}C)$ range and Songpagu, a $22.7{\sim}30.6(^{\circ}C)$ respectively, the surface temperature of Yeouido $25.8{\sim}32.6(^{\circ}C)$ were in the range.

IRES Support Structure Design in a GEO Multi-Functional Satellite (정지궤도 복합위성의 적외선 지구센서 지지구조물 설계)

  • Park, Jong-Seok;Jeon, Hyung-Yoll;Kim, Chang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.68-74
    • /
    • 2009
  • Infra-red earth sensors(IRES) are accommodated in a geostationary multi-functional satellite, which includes optical payloads for observing the earth, to provide pointing reference for the payloads. Even the slight pointing difference between the IRES and the payloads is so critical from the geostationary orbit that can degrade their imaging performance. Therefore, a dedicated support structure is required to guarantee the stability during the flight operation. This paper shows the design justification for the IRES support structure employed in the Communication, Ocean and Meteorological Satellite(COMS). It intends to give an overall design presentation and to justify that this design is compatible with all the requirements in terms of stiffness and strength as well as the stability.

  • PDF