Precipitation plays an essential role in water resources management and disaster prevention. Therefore, the understanding related to spatiotemporal characteristics of rainfall is necessary. Nowadays, highly accurate precipitation is mainly obtained from gauge observation systems. However, the density of gauge stations is a sparse and uneven distribution in mountainous areas. With the proliferation of technology, satellite-based precipitation sources are becoming increasingly common and can provide rainfall information in regions with complex topography. Nevertheless, satellite-based data is that it still remains uncertain. To overcome the above limitation, this study aims to take the strengthens of machine learning to generate a new reanalysis of precipitation data by fusion of multiple satellite precipitation products (SPPs) with gauge observation data. Several machine learning algorithms (i.e., Random Forest, Support Vector Regression, and Artificial Neural Network) have been adopted. To investigate the robustness of the new reanalysis product, observed data were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the machine learning model showed higher accuracy than original satellite rainfall products, and its spatiotemporal variability was better reflected than others. Thus, reanalysis of satellite precipitation product based on machine learning can be useful source input data for hydrological simulations in ungauged river basins.
본 연구에서는 다중위성 강수자료의 수문학적 적용성을 평가하기 위하여 Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), Global Satellite Mapping of Precipitation (GSMaP), Climate Prediction Center (CPC) Morphing technique(CMORPH) 등 전 지구 규모의 고해상도 다중위성 강수자료와 분포형 수문모형을 이용하여 유출모의를 수행하였다. 충주댐 유역에 대하여 2002년 1월 1일부터 2009년 12월 31일까지의 기간에 대하여 Coupled Routing and Excess Storage (CREST) 모형을 적용하였다. 분석기간은 준비기간(2002-2003년, 2006-2007년), 보정기간(2004-2005년), 그리고 검증기간(2008-2009년)으로 구분하여 모의를 수행하였다. 각 다중위성 강수자료를 지상관측자료와 비교결과, 강수의 계절적 변동특성은 잘 반영하고 있으나 연강수량합계 및 월평균강수량에서 TMPA는 과대추정을, GSMaP과 CMORPH는 과소추정하는 경향을 보여주었다. 또한 유출분석결과, TMPA를 제외한 GSMaP과 CMORPH의 충주댐 유역에 대한 수문학적 적용성이 매우 낮은 것을 알 수 있었으며, 향후 다중위성 강수자료의 활용에 앞서 통계적 보정이나 강수알고리즘에 대한 개선이 필요한 것으로 판단된다.
Precipitation is a crucial component of water cycle and play a key role in hydrological processes. Traditionally, gauge-based precipitation is the main method to achieve high accuracy of rainfall estimation, but its distribution is sparsely in mountainous areas. Recently, satellite-based precipitation products (SPPs) provide grid-based precipitation with spatio-temporal variability, but SPPs contain a lot of uncertainty in estimated precipitation, and the spatial resolution quite coarse. To overcome these limitations, this study aims to generate new grid-based daily precipitation using Automatic weather system (AWS) in Korea and multiple SPPs(i.e. CHIRPSv2, CMORPH, GSMaP, TRMMv7) during the period of 2003-2017. And this study used a machine learning based Random Forest (RF) model for generating new merging precipitation. In addition, several statistical linear merging methods are used to compare with the results of the RF model. In order to investigate the efficiency of RF, observed data from 64 observed Automated Synoptic Observation System (ASOS) were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the random forest model showed higher accuracy than each satellite rainfall product and spatio-temporal variability was better reflected than other statistical merging methods. Therefore, a random forest-based ensemble satellite precipitation product can be efficiently used for hydrological simulations in ungauged basins such as the Mekong River.
Spatial precipitation data is one of the essential components in modeling hydrological problems. The estimation of these data has achieved significant achievements own to the recent advances in remote sensing technology. However, there are still gaps between the satellite-derived rainfall data and observed data due to the significant dependence of rainfall on spatial and temporal characteristics. An effective approach based on the Convolutional Neural Network (CNN) model to correct the satellite-derived rainfall data is proposed in this study. The Mekong River basin, one of the largest river system in the world, was selected as a case study. The two gridded precipitation data sets with a spatial resolution of 0.25 degrees used in the CNN model are APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). In particular, PERSIANN-CDR data is exploited as satellite-based precipitation data and APHRODITE data is considered as observed rainfall data. In addition to developing a CNN model to correct the satellite-based rain data, another statistical method based on standard deviations for precipitation bias correction was also mentioned in this study. Estimated results indicate that the CNN model illustrates better performance both in spatial and temporal correlation when compared to the standard deviation method. The finding of this study indicated that the CNN model could produce reliable estimates for the gridded precipitation bias correction problem.
본 연구에서는 NOAA CPC에서 제공하고 있는 인공위성을 이용한 광역적 강수량 추정 자료인 CMORPH와 지상 관측자료와의 비교를 통해 위성으로부터 유도된 강수자료의 정확도 및 활용 가능성 등 수자원 분야 이용 가능성을 분석하는 것을 목적으로 하였다. 2002-2011년의 10년간의 자료를 분석한 결과 1일 누가강수의 상관계수가 평균 0.87 정도로 분석되었으나, 연간 총강수량은 약 4~5배 정도 차이가 나는 것으로 분석되었다. 또한 시간해상도가 커짐에 따라 RMSE의 변동성이 작아지는 것으로 분석되었다. 유역 규모에 따른 분석에서 유역 규모가 커질수록 강수자료의 정확도에 대한 평가가 향상되는 것으로 분석되었다.
Precipitation is an important component of the hydrological cycle and a key input parameter for many applications in hydrology, climatology, meteorology, and weather forecasting research. Grid-based satellite rainfall products with wide spatial coverage and easy accessibility are well recognized as a supplement to ground-based observations for various hydrological applications. The error properties of satellite rainfall products vary as a function of rainfall intensity, climate region, altitude, and land surface conditions. Therefore, this study aims to evaluate the commonly used new global grid-based satellite rainfall product, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), using data collected at different spatial and temporal scales. Additionally, in this study, grid-based CHIRPS satellite precipitation data were used to evaluate the 2022 extreme drought. CHIRPS provides high-resolution precipitation data at 5 km and offers reliable global data through the correction of ground-based observations. A frequency analysis was performed to determine the precipitation deficit in 2022. As a result of comparing droughts in 2015, 2017, and 2022, it was found that May 2022 had a drought frequency of more than 500 years. The 1-month SPI in May 2022 indicated a severe drought with an average value of -1.8, while the 3-month SPI showed a moderate drought with an average value of 0.6. The extreme drought experienced in South Korea in 2022 was evident in the 1-month SPI. Both CHIRPS precipitation data and observations from weather stations depicted similar trends. Based on these results, it is concluded that CHIRPS can be used as fundamental data for drought evaluation and monitoring in unmeasured areas of precipitation.
본 연구는 위성강수에 대한 정확도를 비교함으로써 미계측 혹은 비접근 지역에 대한 적용성을 판단하는 것을 목적으로 하고 있다. 정확도 평가 결과 전체적인 강수의 공간분포는 세 개의 이벤트 모두 지상계측강우와 위성강수가 유사한 것으로 분석되었다. 1개월간의 강수의 경우 지상계측강수(ASOS)와 위성강수의 1시간의 시간해상도에서 상관계수는 0.42~0.46정도로 분석되었다. 강수가 집중된 기간에 대한 평가에서 1시간의 시간해상도에 대한 상관계수가 IMERG는 0.55~0.66, GSMaP는 0.56~0.67로 분석되었다. 세 개의 이벤트에 대한 관측소별 총강우의 분석결과 상관계수는 IMERG와 GSMaP이 CMORPH 보다 상대적으로 우수한 것으로 분석되었고, 바이어스는 상대적으로 CMORPH가 우수한 것으로 분석되었다. 그러나 3개 위성강수 모두 지상계측강수와 비교하여 과소하게 추정되고 있는 것으로 분석되었다. 향후에는 본 연구를 통해 얻어진 결과를 반영하여 북한을 포함한 한반도 전체에 대한 강수량을 추정하는 연구를 수행할 계획이다.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.656-656
/
2002
It is studied on the relationship between the occurrence of red tide(Chlorophyll-a concentration by the in-situ and satellite data) and the meteorological factors (precipitation, air temperature, sunshine and winds) in the coastal areas in the South Sea of Korea. In summer and early-fall which frequently occurred the red tide, the precipitation above 213mm had directly influence on the occurrence of red tide because it carried the nutritive substance which originated from the land into the coastal areas. Then air temperature kept up generally high values as 23~26$^{\circ}C$, and sunshine with 187~198hours and wind velocity with 3.1~7.9m/s showed not directly the relationship on the occurrence of red tide.
Remote sensing products have long been used to monitor and forecast natural disasters. Satellite-derived rainfall products are becoming more accurate as space and time resolution improve, and are widely used in areas where measurement is difficult because of the periodic accumulation of images in large areas. In the case of North Korea, there is a limit to the estimation of precipitation for unmeasured areas due to the limited accessibility and quality of statistical data. CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) is global satellite-derived rainfall data of 0.05 degree grid resolution. It has been available since 1981 from USAID (U.S. Agency for International Development), NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration). This study evaluates the applicability of CHIRPS rainfall products for South Korea and North Korea by comparing CHIRPS data with ground observation data, and analyzing temporal and spatial drought trends using the Standardized Precipitation Index (SPI), a meteorological drought index available through CHIRPS. The results indicate that the data set performed well in assessing drought years (1994, 2000, 2015 and 2017). Overall, this study concludes that CHIRPS is a valuable tool for using data to estimate precipitation and drought monitoring in Korea.
East Asia, which includes China, Japan, Korea, and Mongolia, is highly impacted by hydroclimate extremes such drought, flood, and typhoon recent year. In 2017, more than 18.5 million hectares of crops have been damaged in China, and Korea has suffered economic losses as a result of severe drought. Satellite-derived rainfall products are becoming more accurate as space and time resolution become increasingly higher, and provide an alternative means of estimating ground-based rainfall. In this study, we verified the availability of rainfall products by comparing widely used satellite images such as Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Global Precipitation Climatology Centre (GPCC), and Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with ground stations in East Asia. Also, the satellite-based rainfall products were used to calculate the Standardized Precipitation Index (SPI). The temporal resolution is based on monthly images and compared with the past 30 years data from 1989 to 2018. The comparison between rainfall data based on each satellite image products and the data from weather station-based weather data was shown by the coefficient of determination and showed more than 0.9. Each satellite-based rainfall data was used for each grid and applied to East Asia and South Korea. As a result of SPI analysis, the RMSE values of CHIRPS were 0.57, 0.53 and 0.47, and the MAE values of 0.46, 0.43 and 0.37 were better than other satellite products. This satellite-derived rainfall estimates offers important advantages in terms of spatial coverage, timeliness and cost efficiency compared to analysis for drought assessment with ground stations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.