• Title/Summary/Keyword: Satellite Photogrammetry

Search Result 481, Processing Time 0.029 seconds

The Altimeter Geoid of the Region of Korean peninsula

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 1995
  • This paper is to provide a reference surface geoid for geodetic applications of satellite altimeter data. The paticular satellite alone or the combination with other altimeter data could be used for the recovery of geoid un-dulations and gravity anomalies in the ocean areas. This paper also describes the geoidal undulation in the ocean area of Korean Peninusla using Geosat, ERS-1 and Topex/Poseidon data. The results show that the quasi-stationary sea surface topography (557) is estimated to be less than 10 cm RMS value in the ocean area of Korean Peninsula. This can be considered as an altimeter geoid.

  • PDF

Development of Modeling Method for 3-D Positioning of IKONOS Satellite Imagery (IKONOS 위성영상의 3차원 위치 결정 모형화 기법 개발)

  • 진경혁;홍재민;유환희;유복모
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • Recent adoption of the generalized sensor model to IKONOS and Quickbird satellite imagery have promoted various research activities concerning alternative sensor models which can replace conventional physical sensor models. For example, there are the Rational Function Model(RFM), the Direct Linear Transform(DLT) and the polynomial transform. In this paper, the DLT model which uses just a few number of GCPs was suggested. To evaluate the accuracy of the proposed DLT model, the RFM using 35 GCPs and the bias compensation method(Fraser et al., 2003) were compared with it. Quantitative evaluation of 3B positioning results were performed with independent check points and the digital elevation models(DEMs). In result, a 1.9- to 2.2-m positioning accuracy was achieved for modeling and DEM accuracy is similar to the accuracy of the other model methods.

  • PDF

Sensor Modeling of KOMPSAT-2 Satellite Using Strip Image (스트립 영상을 이용한 KOMPSAT-2 위성 센서모델링)

  • Kim, Sang-Pil;Son, Hong-Gyu;Jo, Gyeong-Hun;Choi, Kang-Jo;Yoo, Son-Han
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.217-219
    • /
    • 2010
  • Sensor modeling is the basic step to extract and to use the information from satellite images. Sensor modeling requires ground control points. If we use a single image, we have limitations on modeling about images captured from regions that we can not approach or take GCPs. In this research, we use strip images to do sensor modeling by two methods. At first, we apply sensor modeiling to single image and apply the results by extrapolation. Next, we consider strip images to single image. As a result, we find the second method is more accurate about whole image.

  • PDF

3D PROCESSING OF HIGH-RESOLUTION SATELLITE IMAGES

  • Gruen, Armin;Li, Zhang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.24-27
    • /
    • 2003
  • High-resolution satellite images at sub-5m footprint are becoming increasingly available to the earth observation community and their respective clients. The related cameras are all using linear array CCD technology for image sensing. The possibility and need for accurate 3D object reconstruction requires a sophisticated camera model, being able to deal with such sensor geometry. We have recently developed a full suite of new methods and software for the precision processing of this kind of data. The software can accommodate images from IKONOS, QuickBird, ALOS PRISM, SPOT5 HRS and sensors of similar type to be expected in the future. We will report about the status of the software, the functionality and some new algorithmic approaches in support of the processing concept. The functionality will be verified by results from various pilot projects. We put particular emphasis on the automatic generation of DSMs, which can be done at sub-pixel accuracy and on the semi-automated generation of city models.

  • PDF

Detection of Roads Information and the Accuracy Analysis from IKONOS Satellite Image Data (IKONOS 위성 영상데이터로부터 도로정보의 판독과 그 정확도 분석)

  • 안기원;김상철;신석효
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.235-242
    • /
    • 2002
  • This study is focused on the analysis of road extracting accuracy from the high resolution IKONOS satellite image data. A geometric correction of the image is performed using the RFM and interpretation with the screen digitizing is also performed for extracting the roads information. For the evaluation of road extracting accuracy, the road locations and the road widths are compared with the national digital map. The comparison results shows that the road boundary and the size of road width are able to extract with the geometric accuracy of $\pm$3.4m and $\pm$1.1m.

Analysis of Accumulation/Erosion in River Using Satellite Image (인공위성영상을 이용한 하천의 퇴적/침식 분석)

  • Yang In-Tae;Kim Dong-Moon;Chun Ki-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • Damage of rivers construction is serious to natural disaster by concentration rainfall in summer. Specially, increase of soil erosion breeds flood calamity of river bed accumulation and pondage decline etc., and erosion increase in upper stream shows in rivers flood of earth and sand, farm land and form of urban district burying. Flood damage investigation through on-the-spot probe until present need effective and scientific modelling techniques because is not efficient. This research wished to examine practical use of monitoring data of high resolution satellite image through satellite image analysis of various space resolution. Research analyzed abstraction possibility of soil disaster information using high resolution satellite image. Also, studied soil disaster damage present condition interpretation practical use possibility through various resolution satellite image analysis, and studied practical use of KOMPSAT image for interpretation of river topography change analysis.

Estimating the Application Possibility of High-resolution Satellite Image for Update and Revision of Digital Map (수치지도의 수정 및 갱신을 위한 고해상도 위성영상의 적용 가능성 평가)

  • 강준묵;이철희;이형석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.313-321
    • /
    • 2002
  • Supplying high-resolution satellite image, we take much interest in the update and the revision of digital map and thematic map based on the satellite image. This study presented the possibility of the update and the revision to the existing digital map on a scale of l/5,000 and 1/25,000 to take advantage of the IKONOS satellite image. We performed geometric correction to make use of the ground control points of the existing digital map in IKONOS mono-image and created ortho-image by extracting digital elevation model from three dimensional contour data and altitude on the existing digital map. We revised changed features in the method of screen digitizing by overlapping orthorectified satellite image and existing digital map and flawed features of the unchanged area on the satellite images for positional accuracy analysis. As a result, rectification error is calculated at $\pm$3.35m by RMSE. There is a good possibility of update of digital map under the scale of 1/10,000. It is possible to the update of the large scale digital map over the scale of l/5,000, as if we used the method of stereo image and ground control point surveying.

Investigation on the Accuracy of bundle Adjustments and Exterior Orientation Parameter Estimation of Linear Pushbroom Sensor Models (선형 푸시브룸 센서모델의 번들조정 정확도 및 외부표정요소추정 정확도 분석)

  • Kim Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.137-145
    • /
    • 2005
  • In this paper, we investigate the accuracy of various sensor models developed for linear pushbroom satellite images. We define the accuracy of a sensor model in two aspects: the accuracy of bundle adjustments and the accuracy of estimating exterior orientation parameters. The first accuracy has been analyzed and reported frequently whereas the second accuracy has somewhat been neglected. We argue that the second accuracy is as important as the first one. The second accuracy describes a model's ability to predict satellite orbit and attitude, which has many direct and indirect applications. Analysis was carried out on the traditional collinearity-based sensor models and orbit-based sensor models. Collinearity-based models were originally developed for aerial photos and modified for linear pushbroom-type satellite images. Orbit-based models have been used within satellite communities for satellite control and orbit determination. Models were tested with two Kompsat-1 EOC scenes and GPS-driven control points. Test results showed that orbit-based models produced better estimation of exterior orientation parameters while maintained comparable accuracy on bundle adjustments.

Cast Shadow Extraction of Mountainous Terrain in Satellite Imagery (위성영상에서 산악지역의 그림자 추출)

  • 손홍규;윤공현;송영선
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.309-312
    • /
    • 2004
  • In mountainous area with high relief, topography may cause cast shadows due to the blocking of direct solar radiation. Remote sensing images of these landscapes display reduced values of reflectance for shadowed areas compared to non-shadowed areas with similar surface cover characteristics. A variety of approaches are possible, though a common step in various active approaches is first to delineate the shadows using automated algorithm and digital surface model (or digital elevation model). This articles demonstrates a common confusion caused by cast shadows

  • PDF

Accuracy of Geocoding According to The Number of Control Points (기준점 개수에 따른 RADARSAT-1 영상의 기하보정 정확도)

  • 손홍규;송영선;방수남;박완용
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.303-308
    • /
    • 2004
  • The acquisition of many control points for SAR data processing is very difficult and time_consuming steps. For resolving the problem about control points, this paper describes satellite orbit refinement method using minimum control point. Accuracy of geocoding according to distribution and number of control points are analyzed and geocoded RADARSAT image was produced in the paper.

  • PDF