• Title/Summary/Keyword: Satellite Monitoring

Search Result 972, Processing Time 0.024 seconds

Analysis of the Cloud Removal Effect of Sentinel-2A/B NDVI Monthly Composite Images for Rice Paddy and High-altitude Cabbage Fields (논과 고랭지 배추밭 대상 Sentinel-2A/B 정규식생지수 월 합성영상의 구름 제거 효과 분석)

  • Eun, Jeong;Kim, Sun-Hwa;Kim, Taeho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1545-1557
    • /
    • 2021
  • Crops show sensitive spectral characteristics according to their species and growth conditions and although frequent observation is required especially in summer, it is difficult to utilize optical satellite images due to the rainy season. To solve this problem, Constrained Cloud-Maximum Normalized difference vegetation index Composite (CC-MNC) algorithm was developed to generate periodic composite images with minimal cloud effect. In thisstudy, using this method, monthly Sentinel-2A/B Normalized Difference Vegetation Index (NDVI) composite images were produced for paddies and high-latitude cabbage fields from 2019 to 2021. In August 2020, which received 200mm more precipitation than other periods, the effect of clouds, was also significant in MODIS NDVI 16-day composite product. Except for this period, the CC-MNC method was able to reduce the cloud ratio of 45.4% of the original daily image to 14.9%. In the case of rice paddy, there was no significant difference between Sentinel-2A/B and MODIS NDVI values. In addition, it was possible to monitor the rice growth cycle well even with a revisit cycle 5 days. In the case of high-latitude cabbage fields, Sentinel-2A/B showed the short growth cycle of cabbage well, but MODIS showed limitations in spatial resolution. In addition, the CC-MNC method showed that cloud pixels were used for compositing at the harvest time, suggesting that the View Zenith Angle (VZA) threshold needsto be adjusted according to the domestic region.

A Development for Sea Surface Salinity Algorithm Using GOCI in the East China Sea (GOCI를 이용한 동중국해 표층 염분 산출 알고리즘 개발)

  • Kim, Dae-Won;Kim, So-Hyun;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1307-1315
    • /
    • 2021
  • The Changjiang Diluted Water (CDW) spreads over the East China Sea every summer and significantly affects the sea surface salinity changes in the seas around Jeju Island and the southern coast of Korea peninsula. Sometimes its effect extends to the eastern coast of Korea peninsula through the Korea Strait. Specifically, the CDW has a significant impact on marine physics and ecology and causes damage to fisheries and aquaculture. However, due to the limited field surveys, continuous observation of the CDW in the East China Sea is practically difficult. Many studies have been conducted using satellite measurements to monitor CDW distribution in near-real time. In this study, an algorithm for estimating Sea Surface Salinity (SSS) in the East China Sea was developed using the Geostationary Ocean Color Imager (GOCI). The Multilayer Perceptron Neural Network (MPNN) method was employed for developing an algorithm, and Soil Moisture Active Passive (SMAP) SSS data was selected for the output. In the previous study, an algorithm for estimating SSS using GOCI was trained by 2016 observation data. By comparison, the train data period was extended from 2015 to 2020 to improve the algorithm performance. The validation results with the National Institute of Fisheries Science (NIFS) serial oceanographic observation data from 2011 to 2019 show 0.61 of coefficient of determination (R2) and 1.08 psu of Root Mean Square Errors (RMSE). This study was carried out to develop an algorithm for monitoring the surface salinity of the East China Sea using GOCI and is expected to contribute to the development of the algorithm for estimating SSS by using GOCI-II.

Distribution of Surface Solar Radiation by Radiative Model in South Korea (복사 모델에 의한 남한의 지표면 태양광 분포)

  • Zo, Il-Sung;Jee, Joon-Bum;Lee, Won-Hak;Lee, Kyu-Tae;Choi, Young-Jean
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.147-161
    • /
    • 2010
  • The temporal and spatial distributions of surface solar radiation were calculated by the one layer solar radiative transfer model(GWNU) which was corrected by multi layer Line-by-Line(LBL) model during 2009 in South Korea. The aerosol optical thickness, ozone amount, cloud fraction and total precipitable water were used as the input data for GWNU model run and they were retrieved from Moderate Resolution Imaging Spectrometer(MODIS), Ozone Monitoring Instrument(OMI), MTSAT-1R satellite data and the Regional Data Assimilation Prediction System(RDAPS) model result, respectively. The surface solar radiation was calculated with 4 km spatial resolution in South Korea region using the GWNU model and the results were compared with surface measurement(by pyranometer) data of 22 KMA solar sites. The maximum values(more than $5,400MJ/m^2$) of model calculated annual solar radiation were found in Andong, Daegu and Jinju regions and these results were corresponded with the MTSAT-1R cloud amount data. However, the spatial distribution of surface measurement data was comparatively different from the model calculation because of the insufficient correction and management problems for the sites instruments(pyranometer).

Baekdu Volcano Lake "Chun-ji" Ice Dynamic Monitoring Using TerraSAR-X Satellite Imagery (TerraSAR-X 위성영상을 활용한 백두산 천지 얼음 면적 변화 모니터링)

  • Park, Sung-Jae;Lee, Seulki;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.327-336
    • /
    • 2019
  • The caldera lake "Chun-ji" is located at the summit of Baekdu volcano, which is in the border of China and North Korea. Chun-ji Lake has altitude 2,189 m above sea level. The Chun-ji is freezing in the winter when the water temperature goes down to zero for a year, and it melts in the season when the water temperature goes up again. However,since it is located at a high altitude, there are many cloudy days, and it is difficult to observe with optical images. For this reason, radar images, which are less influenced by weather than optical images, are more effective for observing the ice of heaven and earth. In this study, 75 TerraSAR-X images from chun-ji area were used for analysis from 2015 to 2017, and the calculated ice area and temperature changes were analyzed. As a result, the ice of the caldera lake formed was formed in early December and slowly melted until mid-April. During this period, temperatures in the Samjiyeon area were about $-10^{\circ}C$ when ice was produced, and the temperature was about $0^{\circ}C$ in mid-April when it was thawing. Correlation coefficients between ice surface area and temperature in winter 2015 and 2016, where global ice is produced,show a high correlation of -0.82 and -0.75. In addition to the results of this study, it can be used as an indicator to monitor the volcanic activity by comparing the result of the recent volcanic activity with the result of the increase in water temperature using various imagery.

Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages (딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지)

  • Byunghyun Yoon;Seonkyeong Seong;Jaewan Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • The remotely sensed data, such as satellite imagery and aerial photos, can be used to extract and detect some objects in the image through image interpretation and processing techniques. Significantly, the possibility for utilizing digital map updating and land monitoring has been increased through automatic object detection since spatial resolution of remotely sensed data has improved and technologies about deep learning have been developed. In this paper, we tried to extract plastic greenhouses into aerial orthophotos by using fully convolutional densely connected convolutional network (FC-DenseNet), one of the representative deep learning models for semantic segmentation. Then, a quantitative analysis of extraction results had performed. Using the farm map of the Ministry of Agriculture, Food and Rural Affairsin Korea, training data was generated by labeling plastic greenhouses into Damyang and Miryang areas. And then, FC-DenseNet was trained through a training dataset. To apply the deep learning model in the remotely sensed imagery, instance norm, which can maintain the spectral characteristics of bands, was used as normalization. In addition, optimal weights for each band were determined by adding attention modules in the deep learning model. In the experiments, it was found that a deep learning model can extract plastic greenhouses. These results can be applied to digital map updating of Farm-map and landcover maps.

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.

A study on automated soil moisture monitoring methods for the Korean peninsula based on Google Earth Engine (Google Earth Engine 기반의 한반도 토양수분 모니터링 자동화 기법 연구)

  • Jang, Wonjin;Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.615-626
    • /
    • 2024
  • To accurately and efficiently monitor soil moisture (SM) across South Korea, this study developed a SM estimation model that integrates the cloud computing platform Google Earth Engine (GEE) and Automated Machine Learning (AutoML). Various spatial information was utilized based on Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and the global precipitation observation satellite GPM (Global Precipitation Measurement) to test optimal input data combinations. The results indicated that GPM-based accumulated dry-days, 5-day antecedent average precipitation, NDVI (Normalized Difference Vegetation Index), the sum of LST (Land Surface Temperature) acquired during nighttime and daytime, soil properties (sand and clay content, bulk density), terrain data (elevation and slope), and seasonal classification had high feature importance. After setting the objective function (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE) using AutoML for the combination of the aforementioned data, a comparative evaluation of machine learning techniques was conducted. The results revealed that tree-based models exhibited high performance, with Random Forest demonstrating the best performance (R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).

Retrieval of Sulfur Dioxide Column Density from TROPOMI Using the Principle Component Analysis Method (주성분분석방법을 이용한 TROPOMI로부터 이산화황 칼럼농도 산출 연구)

  • Yang, Jiwon;Choi, Wonei;Park, Junsung;Kim, Daewon;Kang, Hyeongwoo;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1173-1185
    • /
    • 2019
  • We, for the first time, retrieved sulfur dioxide (SO2) vertical column density (VCD) in industrial and volcanic areas from TROPOspheric Monitoring Instrument (TROPOMI) using the Principle component analysis(PCA) algorithm. Furthermore, SO2 VCDs retrieved by the PCA algorithm from TROPOMI raw data were compared with those retrieved by the Differential Optical Absorption Spectroscopy (DOAS) algorithm (TROPOMI Level 2 SO2 product). In East Asia, where large amounts of SO2 are released to the surface due to anthropogenic source such as fossil fuels, the mean value of SO2 VCD retrieved by the PCA (DOAS) algorithm was shown to be 0.05 DU (-0.02 DU). The correlation between SO2 VCD retrieved by the PCA algorithm and those retrieved by the DOAS algorithm were shown to be low (slope = 0.64; correlation coefficient (R) = 0.51) for cloudy condition. However, with cloud fraction of less than 0.5, the slope and correlation coefficient between the two outputs were increased to 0.68 and 0.61, respectively. It means that the SO2 retrieval sensitivity to surface is reduced when the cloud fraction is high in both algorithms. Furthermore, the correlation between volcanic SO2 VCD retrieved by the PCA algorithm and those retrieved by the DOAS algorithm is shown to be high (R = 0.90) for cloudy condition. This good agreement between both data sets for volcanic SO2 is thought to be due to the higher accuracy of the satellite-based SO2 VCD retrieval for SO2 which is mainly distributed in the upper troposphere or lower stratosphere in volcanic region.

Retrieval of Nitrogen Dioxide Column Density from Ground-based Pandora Measurement using the Differential Optical Absorption Spectroscopy Method (차등흡수분광기술을 이용한 지상기반 Pandora 관측으로부터의 대기 중 이산화질소 칼럼농도 산출)

  • Yang, Jiwon;Hong, Hyunkee;Choi, Wonei;Park, Junsung;Kim, Daewon;Kang, Hyeongwoo;Lee, Hanlim;Kim, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.981-992
    • /
    • 2017
  • We, for the first time, retrieved tropospheric nitrogen dioxide ($Trop.NO_2$) vertical column density (VCD) from ground-based instrument, Pandora, using the optical density fitting based on Differential Optical Absorption Spectroscopy (DOAS)in Seoul for the period from May 2014 to December 2014. The $Trop.NO_2$ VCDs retrieved from Pandora were compared with those obtained from Ozone Monitoring Instrument (OMI). A correlation coefficient (R) between those retrieved from Pandora and those obtained from OMI is 0.55. To compare with surface $NO_2$ VMRs obtained from in-situ, Trop. $NO_2$ VCDs retrieved from Pandora and those obtained from OMI are converted into $NO_2$ VMRs in boundary layer (BLH $NO_2$ VMRs) using data measured from Atmospheric Infrared Sounder (AIRS). Surface $NO_2$ VMRs obtained from in-situ range from 5.5 ppbv to 61.5 ppbv. BLH $NO_2$ VMRs retrieved from Pandora and OMI range from 2.1 ppbv to 44.2 ppbv and from 0.9 ppbv to 11.6 ppbv, respectively. The range of BLH $NO_2$ VMRs retrieved from OMI is narrower than that of BLH $NO_2$ VMRs retrieved from Pandora and surface $NO_2$ VMRs obtained from in-situ. There is a batter correlation between surface $NO_2$ VMRs obtained from in-situ and BLH $NO_2$ VMRs retrieved from Pandora (R= 0.50)than the correlation between surface $NO_2$ VMRs obtained from in-situ and BLH $NO_2$ VMRs retrieved from OMI (R = 0.36). This poor correlation is thought to be due to the lower near-surface sensitivity of the satellite-based instrument (OMI) than Pandora, the ground-based instrument.

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.