DOI QR코드

DOI QR Code

Retrieval of Nitrogen Dioxide Column Density from Ground-based Pandora Measurement using the Differential Optical Absorption Spectroscopy Method

차등흡수분광기술을 이용한 지상기반 Pandora 관측으로부터의 대기 중 이산화질소 칼럼농도 산출

  • Yang, Jiwon (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University) ;
  • Hong, Hyunkee (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University) ;
  • Choi, Wonei (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University) ;
  • Park, Junsung (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University) ;
  • Kim, Daewon (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University) ;
  • Kang, Hyeongwoo (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University) ;
  • Lee, Hanlim (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University) ;
  • Kim, Joon (Department of Atmospheric Sciences, Yonsei University)
  • 양지원 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) ;
  • 홍현기 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) ;
  • 최원이 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) ;
  • 박준성 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) ;
  • 김대원 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) ;
  • 강형우 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) ;
  • 이한림 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) ;
  • 김준 (연세대학교 대기과학과)
  • Received : 2017.12.05
  • Accepted : 2017.12.22
  • Published : 2017.12.31

Abstract

We, for the first time, retrieved tropospheric nitrogen dioxide ($Trop.NO_2$) vertical column density (VCD) from ground-based instrument, Pandora, using the optical density fitting based on Differential Optical Absorption Spectroscopy (DOAS)in Seoul for the period from May 2014 to December 2014. The $Trop.NO_2$ VCDs retrieved from Pandora were compared with those obtained from Ozone Monitoring Instrument (OMI). A correlation coefficient (R) between those retrieved from Pandora and those obtained from OMI is 0.55. To compare with surface $NO_2$ VMRs obtained from in-situ, Trop. $NO_2$ VCDs retrieved from Pandora and those obtained from OMI are converted into $NO_2$ VMRs in boundary layer (BLH $NO_2$ VMRs) using data measured from Atmospheric Infrared Sounder (AIRS). Surface $NO_2$ VMRs obtained from in-situ range from 5.5 ppbv to 61.5 ppbv. BLH $NO_2$ VMRs retrieved from Pandora and OMI range from 2.1 ppbv to 44.2 ppbv and from 0.9 ppbv to 11.6 ppbv, respectively. The range of BLH $NO_2$ VMRs retrieved from OMI is narrower than that of BLH $NO_2$ VMRs retrieved from Pandora and surface $NO_2$ VMRs obtained from in-situ. There is a batter correlation between surface $NO_2$ VMRs obtained from in-situ and BLH $NO_2$ VMRs retrieved from Pandora (R= 0.50)than the correlation between surface $NO_2$ VMRs obtained from in-situ and BLH $NO_2$ VMRs retrieved from OMI (R = 0.36). This poor correlation is thought to be due to the lower near-surface sensitivity of the satellite-based instrument (OMI) than Pandora, the ground-based instrument.

본 연구에서는 처음으로 차등흡수분광기술(Differential Optical Absorption Spectroscopy, DOAS) 중 광학 두께 피팅(optical density fitting) 방법을 이용하여 지상기반 원격 측정 장비인 Pandora의 복사휘도 자료로부터 2014년 5월부터 12월 사이 서울에서의 대류권 이산화질소 연직칼럼농도를 산출하였다. 본 연구에서는 Pandora로부터 산출된 대류권 이산화질소 연직칼럼농도와 Aura 위성의 OMI (Ozone Monitoring Instrument) 센서로부터 산출된 대류권 이산화질소 연직칼럼농도를 비교하였다. Pandora로 부터 산출된 대류권 이산화질소 연직칼럼농도와 OMI 센서로부터 산출된 대류권 이산화질소 연직칼럼농도 사이의 상관계수(Correlation coefficient, R)는 0.55로 나타났다. 현장 측정 장비로부터 측정된 지표 이산화질소 혼합비와의 비교를 위해 AIRS (Atmospheric Infrared Sounder) 관측 자료를 이용하여 Pandora와 OMI센서로부터 산출된 대류권 이산화질소 연직칼럼농도를 행성경계층 내 이산화질소 혼합비로 변환하였다. 현장 측정 자료의 지표 이산화질소 혼합비는 5.5 ppbv에서 61.5 ppbv의 범위로 분포하였으며 Pandora와 OMI 센서로부터 산출된 행성경계층 내 이산화질소 혼합비는 각각 2.1 ppbv에서 44.2 ppbv, 0.9 ppbv에서 11.6 ppbv의 범위로 분포하였다. Pandora로부터 산출된 행성경계층 내 이산화질소 혼합비는 현장 측정 장비로부터 측정된 지표 이산화질소 혼합비와 비교적 비슷한 범위로 분포하였으나, OMI센서로부터 측정된 지표 이산화질소 혼합비는 현장 측정 장비와 Pandora의 이산화질소 혼합비에 비해 좁은 범위로 분포하였다. 현장 측정 장비로부터 측정된 지표 이산화질소의 혼합비와 Pandora로부터 산출된 행성경계층 내 이산화질소 혼합비 사이의 상관관계(R = 0.50)는 현장 측정 장비로부터 측정된 지표 이산화질소의 혼합비와 OMI로부터 산출된 행성경계층 내 이산화질소 혼합비 사이의 상관관계(R = 0.36)보다 좋은 것으로 나타났다. 이는 위성 기반 원격 측정 장비인 OMI센서는 지상 기반 원격 측정 장비인 Pandora 장비와 현장 측정 장비에 비하여 높은 고도에서 측정함으로써 지표 부근에 이산화질소에 대한 민감도가 떨어지기 때문인 것으로 생각된다.

Keywords

References

  1. Ackermann-Liebrich, U., P. Leuenberger, J. Schwartz, C. Schindler, C. Monn, G. Bolognini, J.P. Bongard, O. Brandli, G. Domenighetti, S. Elsasser, and L. Grize, 1997. Lung function and long term exposure to air pollutants in Switzerland. Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team, American Journal of Respiratory and Critical Care Medicine, 155(1): 122-129. https://doi.org/10.1164/ajrccm.155.1.9001300
  2. Al-Jeelani, H.A., 2014. Diurnal and seasonal variations of surface ozone and its precursors in the atmosphere of Yanbu, Saudi Arabia, Journal of Environmental Protection, 5(5): 408-422. https://doi.org/10.4236/jep.2014.55044
  3. Aumann, H.H., M.T. Chahine, C. Gautier, M.D. Goldberg, E. Kalnay, L.M. McMillin, H. Revercomb, P.W. Rosenkranz, W.L. Smith, D.H. Staelin, and L.L. Strow, 2003. AIRS/ AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, IEEE Transactions on Geoscience and Remote Sensing, 41(2): 253-264. https://doi.org/10.1109/TGRS.2002.808356
  4. Baek, K.H. and J.H. Kim, 2010. Analysis of Characteristics of Air Pollution Over Asia with Satellite-derived $NO_2$ and HCHO using Statistical Method, Atmosphere, 20(4): 495-503.
  5. Boersma, K.F., H.J. Eskes, and E.J. Brinksma, 2004. Error analysis for tropospheric $NO_2$ retrieval from space, Journal of Geophysical Research: Atmospheres, 109(D4).
  6. Boersma, K.F., H.J. Eskes, J.P. Veefkind, E.J. Brinksma, R.J. Van Der A, M. Sneep, G.H.J. Van Der Oord, P.F. Levelt, P. Stammes., J.F. Gleason, and E.J. Bucsela, 2006. Near-real time retrieval of tropospheric $NO_2$ from OMI, Atmospheric Chemistry and Physics Discussions, 6(6): 12301-12345. https://doi.org/10.5194/acpd-6-12301-2006
  7. Boersma, K.F., H.J. Eskes, J.P. Veefkind, E.J. Brinksma, R.J. Van Der A, M. Sneep, G.H.J. Van Den Oord, P.F. Levelt, P. Stammes, J.F. Gleason, and E.J. Bucsela, 2007. Near-real time retrieval of tropospheric $NO_{2}$ from OMI, Atmospheric Chemistry and Physics, 7(8): 2103-2118. https://doi.org/10.5194/acp-7-2103-2007
  8. Bucsela, E.J., E.A. Celarier, M.O. Wenig, J.F. Gleason, J.P. Veefkind, K.F. Boersma, and E.J. Brinksma, 2006. Algorithm for $NO_2$ vertical column retrieval from the Ozone Monitoring Instrument, IEEE Transactions on Geoscience and Remote Sensing, 44: 1245-1258. https://doi.org/10.1109/TGRS.2005.863715
  9. Cede, A., J. Herman, A. Richter, N. Krotkov, and J. Burrows, 2006. Measurements of nitrogen dioxide total column amounts using a Brewer double spectrophotometer in direct Sun mode, Journal of Geophysical Research: Atmospheres, 111(D5).
  10. Chahine, M.T., T.S. Pagano, H.H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E.J. Fetzer, M. Goldberg, and C. Gautier, 2006. AIRS: Improving weather forecasting and providing new data on greenhouse gases, Bulletin of the American Meteorological Society, 87(7): 911-926. https://doi.org/10.1175/BAMS-87-7-911
  11. Chong, H., J. Kim, W. Kim, H. Lee, J. Kim, M. Choi, U. Jeong, J. An, J. Park, J. Hong, and S. Kim, 2016. Pandora 분광계를 이용한 관측 지점 인근의 대류권 이산화질소 농도 특성 분석, Proc. of Korean Meteorological Society symposium, Busan, Apr. 28-29, pp. 175-176.
  12. Fayt, C., I. De Smedt, V. Letocart, A. Merlaud, G. Pinardi, M. Van Roozendael, and M.V.A.N. Roozendael, 2011. QDOAS Software user manual, Belgian Institute for Space Aeronomy, 1.
  13. Herman, J., A. Cede, E. Spinei, G. Mount, M. Tzortziou, and N. Abuhassan, 2009. $NO_2$ column amounts from ground-based Pandora and MFDOAS spectrometers using the directsun DOAS technique: Intercomparisons and application to OMI validation, Journal of Geophysical Research: Atmospheres, 114(D13).
  14. James Gauderman, W., R.O.B. McConnell, F. Gilliland, S. London, D. Thomas, E. Avol, H. Vora, K. Berhane, E.B. Rappaport, F. Lurmann, and H.G. Margolis, 2000. Association between air pollution and lung function growth in southern California children, American Journal of Respiratory and Critical Care Medicine, 162(4): 1383-1390. https://doi.org/10.1164/ajrccm.162.4.9909096
  15. Kim, D., H. Hong, W. Choi, J. Park, J. Yang, J. Ryu, and H. Lee, 2017. Estimation of surface nitrogen dioxide mixing ratio in Seoul using the OMI satellite data, Korean Journal of Remote Sensing, 33(2): 135-147 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2017.33.2.3
  16. Kim, D., H. Lee, H. Hong, W. Choi, Y.G. Lee, and J. Park, 2017. Estimation of surface NO2 volume mixing ratio in four metropolitan cities in Korea using multiple regression models with OMI and AIRS Data, Remote Sensing, 9(6): 627. https://doi.org/10.3390/rs9060627
  17. Kraus, S., 2006. DOASIS: A framework design for DOAS, Shaker.
  18. Lee, C.K., A. Richter, J.P. Burrows, and Y.J. Kim, 2008. Satellite (SCIAMACHY) measurements of tropospheric $SO_2$ and $NO_2$: seasonal trends of $SO_2$ and $NO_2$ levels over northeast Asia in 2006, Journal of Korean Society for Atmospheric Environment, 24(2): 176-188. https://doi.org/10.5572/KOSAE.2008.24.2.176
  19. Lee, H., 2013. Comparison of Nitrogen Dioxide Retrieved by MAX-DOAS and OMI measurements in Seoul, Korean Journal of Remote Sensing, 29(2): 235-241 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.2.7
  20. Leue, C., M. Wenig, T. Wagner, O. Klimm, U. Platt, and B. Jahne, 2001. Quantitative analysis of NO x emissions from Global Ozone Monitoring Experiment satellite image sequences, Journal of Geophysical Research: Atmospheres, 106(D6): 5493-5505. https://doi.org/10.1029/2000JD900572
  21. Levelt, P.F., E. Hilsenrath, G.W. Leppelmeier, G.H. van den Oord, P.K. Bhartia, J. Tamminen, J.F. de Haan, and J.P. Veefkind, 2006. Science objectives of the ozone monitoring instrument, IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1199-1208. https://doi.org/10.1109/TGRS.2006.872336
  22. Martin, R.V., K. Chance, D.J. Jacob, T.P. Kurosu, R.J. Spurr, E. Bucsela, J.F. Gleason, P.I. Palmer, I. Bey, A.M. Fiore, and Q. Li, 2002. An improved retrieval of tropospheric nitrogen dioxide from GOME, Journal of Geophysical Research: Atmospheres, 107(D20).
  23. Panella, M., V. Tommasini, M. Binotti, L. Palin, and G. Bona, 2000. Monitoring nitrogen dioxide and its effects on asthmatic patients: Two different strategies compared, Environmental monitoring and assessment, 63(3): 447-458. https://doi.org/10.1023/A:1006211508566
  24. Richter, A. and J.P. Burrows, 2002. Tropospheric NO2 from GOME measurements, Advances in Space Research, 29(11): 1673-1683. https://doi.org/10.1016/S0273-1177(02)00100-X
  25. Schindler, C., U. Ackermann-Liebrich, P. Leuenberger, C. Monn, R. Rapp, G. Bolognini, J.P. Bongard, O. Brändli, G. Domenighetti, W. Karrer, and R. Keller, 1998. Associations between Lung Function and Estimated Average Exposure to $NO_2$ in Eight Areas of Switzerland, Epidemiology, 9(4): 405-411. https://doi.org/10.1097/00001648-199807000-00010
  26. Smith, B.J., M. Nitschke, L.S. Pilotto, R.E. Ruffin, D.L. Pisaniello, and K.J. Willson, 2000. Health effects of daily indoor nitrogen dioxide exposure in people with asthma, European Respiratory Journal, 16(5): 879-885. https://doi.org/10.1183/09031936.00.16587900
  27. Uberhuber, C., 2002. Nummerisches Rechnen, Informatik Handbuch, Hanser Verlag.
  28. Venter, A.D., V. Vakkari, J.P. Beukes, P.G. Van Zyl, H. Laakso, D. Mabaso, P. Tiitta, M. Josipovic, M. Kulmala, J.J. Pienaar, and L. Laakso, 2012. An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa, South African Journal of Science, 108(9-10): 1-10.
  29. Yun, S., H. Lee, J. Kim, U. Jeong, S.S. Park, and J. Herman, 2013. Inter-comparison of $NO_{2}$ column densities measured by Pandora and OMI over Seoul, Korea, Korean Journal of Remote Sensing, 29(6): 663-670. https://doi.org/10.7780/kjrs.2013.29.6.9

Cited by

  1. 토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.9